Cargando…
Validation Study on Automated Sleep Stage Scoring Using a Deep Learning Algorithm †
Background and Objectives: Polysomnography is manually scored by sleep experts. However, manual scoring is a time-consuming and labor-intensive task. The goal of this study was to verify the accuracy of automated sleep-stage scoring based on a deep learning algorithm compared to manual sleep-stage s...
Autores principales: | Cho, Jae Hoon, Choi, Ji Ho, Moon, Ji Eun, Lee, Young Jun, Lee, Ho Dong, Ha, Tae Kyoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228793/ https://www.ncbi.nlm.nih.gov/pubmed/35744042 http://dx.doi.org/10.3390/medicina58060779 |
Ejemplares similares
-
Confidence-Based Framework Using Deep Learning for Automated Sleep Stage Scoring
por: Hong, Jung Kyung, et al.
Publicado: (2021) -
SleepEEGNet: Automated sleep stage scoring with sequence to sequence deep learning approach
por: Mousavi, Sajad, et al.
Publicado: (2019) -
Deep Convolutional Recurrent Model for Automatic Scoring Sleep Stages Based on Single-Lead ECG Signal
por: Urtnasan, Erdenebayar, et al.
Publicado: (2022) -
Automated sleep staging algorithms: have we reached the performance limit due to manual scoring?
por: de Chazal, Philip, et al.
Publicado: (2022) -
Evaluation of an automated single-channel sleep staging algorithm
por: Wang, Ying, et al.
Publicado: (2015)