Cargando…

Bacterial Cellulose—Adaptation of a Nature-Identical Material to the Needs of Advanced Chronic Wound Care

Modern wound treatment calls for hydroactive dressings. Among the variety of materials that have entered the field of wound care in recent years, the carbohydrate polymer bacterial cellulose (BC) represents one of the most promising candidates as the biomaterial features a high moisture-loading and...

Descripción completa

Detalles Bibliográficos
Autores principales: Zahel, Paul, Beekmann, Uwe, Eberlein, Thomas, Schmitz, Michael, Werz, Oliver, Kralisch, Dana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228795/
https://www.ncbi.nlm.nih.gov/pubmed/35745602
http://dx.doi.org/10.3390/ph15060683
_version_ 1784734569145040896
author Zahel, Paul
Beekmann, Uwe
Eberlein, Thomas
Schmitz, Michael
Werz, Oliver
Kralisch, Dana
author_facet Zahel, Paul
Beekmann, Uwe
Eberlein, Thomas
Schmitz, Michael
Werz, Oliver
Kralisch, Dana
author_sort Zahel, Paul
collection PubMed
description Modern wound treatment calls for hydroactive dressings. Among the variety of materials that have entered the field of wound care in recent years, the carbohydrate polymer bacterial cellulose (BC) represents one of the most promising candidates as the biomaterial features a high moisture-loading and donation capacity, mechanical stability, moldability, and breathability. Although BC has already gained increasing relevance in the treatment of burn wounds, its potential and clinical performance for “chronic wound” indications have not yet been sufficiently investigated. This article focuses on experimental and clinical data regarding the application of BC within the indications of chronic, non-healing wounds, especially venous and diabetic ulcers. A recent clinical observation study in a chronic wound setting clearly demonstrated its wound-cleansing properties and ability to induce healing in stalling wounds. Furthermore, the material parameters of BC dressings obtained through the static cultivation of Komagataeibacter xylinus were investigated for the first time in standardized tests and compared to various advanced wound-care products. Surprisingly, a free swell absorptive capacity of a BC dressing variant containing 97% moisture was found, which was higher than that of alginate or even hydrofiber dressings. We hypothesize that the fine-structured, open porous network and the resulting capillary forces are among the main reasons for this unexpected result.
format Online
Article
Text
id pubmed-9228795
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-92287952022-06-25 Bacterial Cellulose—Adaptation of a Nature-Identical Material to the Needs of Advanced Chronic Wound Care Zahel, Paul Beekmann, Uwe Eberlein, Thomas Schmitz, Michael Werz, Oliver Kralisch, Dana Pharmaceuticals (Basel) Article Modern wound treatment calls for hydroactive dressings. Among the variety of materials that have entered the field of wound care in recent years, the carbohydrate polymer bacterial cellulose (BC) represents one of the most promising candidates as the biomaterial features a high moisture-loading and donation capacity, mechanical stability, moldability, and breathability. Although BC has already gained increasing relevance in the treatment of burn wounds, its potential and clinical performance for “chronic wound” indications have not yet been sufficiently investigated. This article focuses on experimental and clinical data regarding the application of BC within the indications of chronic, non-healing wounds, especially venous and diabetic ulcers. A recent clinical observation study in a chronic wound setting clearly demonstrated its wound-cleansing properties and ability to induce healing in stalling wounds. Furthermore, the material parameters of BC dressings obtained through the static cultivation of Komagataeibacter xylinus were investigated for the first time in standardized tests and compared to various advanced wound-care products. Surprisingly, a free swell absorptive capacity of a BC dressing variant containing 97% moisture was found, which was higher than that of alginate or even hydrofiber dressings. We hypothesize that the fine-structured, open porous network and the resulting capillary forces are among the main reasons for this unexpected result. MDPI 2022-05-30 /pmc/articles/PMC9228795/ /pubmed/35745602 http://dx.doi.org/10.3390/ph15060683 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zahel, Paul
Beekmann, Uwe
Eberlein, Thomas
Schmitz, Michael
Werz, Oliver
Kralisch, Dana
Bacterial Cellulose—Adaptation of a Nature-Identical Material to the Needs of Advanced Chronic Wound Care
title Bacterial Cellulose—Adaptation of a Nature-Identical Material to the Needs of Advanced Chronic Wound Care
title_full Bacterial Cellulose—Adaptation of a Nature-Identical Material to the Needs of Advanced Chronic Wound Care
title_fullStr Bacterial Cellulose—Adaptation of a Nature-Identical Material to the Needs of Advanced Chronic Wound Care
title_full_unstemmed Bacterial Cellulose—Adaptation of a Nature-Identical Material to the Needs of Advanced Chronic Wound Care
title_short Bacterial Cellulose—Adaptation of a Nature-Identical Material to the Needs of Advanced Chronic Wound Care
title_sort bacterial cellulose—adaptation of a nature-identical material to the needs of advanced chronic wound care
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228795/
https://www.ncbi.nlm.nih.gov/pubmed/35745602
http://dx.doi.org/10.3390/ph15060683
work_keys_str_mv AT zahelpaul bacterialcelluloseadaptationofanatureidenticalmaterialtotheneedsofadvancedchronicwoundcare
AT beekmannuwe bacterialcelluloseadaptationofanatureidenticalmaterialtotheneedsofadvancedchronicwoundcare
AT eberleinthomas bacterialcelluloseadaptationofanatureidenticalmaterialtotheneedsofadvancedchronicwoundcare
AT schmitzmichael bacterialcelluloseadaptationofanatureidenticalmaterialtotheneedsofadvancedchronicwoundcare
AT werzoliver bacterialcelluloseadaptationofanatureidenticalmaterialtotheneedsofadvancedchronicwoundcare
AT kralischdana bacterialcelluloseadaptationofanatureidenticalmaterialtotheneedsofadvancedchronicwoundcare