Cargando…
Soil Moisture a Posteriori Measurements Enhancement Using Ensemble Learning
This work aimed to assess the recalibration and accurate characterization of commonly used smart soil-moisture sensors using computational methods. The paper describes an ensemble learning algorithm that boosts the performance of potato root moisture estimation and increases the simple moisture sens...
Autores principales: | Ruszczak, Bogdan, Boguszewska-Mańkowska, Dominika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228865/ https://www.ncbi.nlm.nih.gov/pubmed/35746371 http://dx.doi.org/10.3390/s22124591 |
Ejemplares similares
-
Deep potato – The hyperspectral imagery of potato cultivation with reference agronomic measurements dataset: Towards potato physiological features modeling
por: Ruszczak, Bogdan, et al.
Publicado: (2022) -
An
a posteriori measure of network modularity
por: Poisot, Timothée
Publicado: (2013) -
Potato (Solanum tuberosum L.) Plant Shoot and Root Changes under Abiotic Stresses—Yield Response
por: Boguszewska-Mańkowska, Dominika, et al.
Publicado: (2022) -
Expected a posteriori scoring in PROMIS(®)
por: Chapman, Robert
Publicado: (2022) -
Early detection of Solanum lycopersicum diseases from temporally-aggregated hyperspectral measurements using machine learning
por: Tomaszewski, Michał, et al.
Publicado: (2023)