Cargando…

Application of Fiber Biochar–MOF Matrix Composites in Electrochemical Energy Storage

Fiber biochar–metal organic framework (MOF) composites were successfully prepared by three different biochar preparation methods, namely, the ionic liquid method, the pyrolysis method, and the direct composite method. The effects of the different preparation methods of fiber biochar on the physical...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Meixiang, Lu, Meng, Zhang, Xia, Luo, Zhenhui, Xiao, Jiaqi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228875/
https://www.ncbi.nlm.nih.gov/pubmed/35745995
http://dx.doi.org/10.3390/polym14122419
Descripción
Sumario:Fiber biochar–metal organic framework (MOF) composites were successfully prepared by three different biochar preparation methods, namely, the ionic liquid method, the pyrolysis method, and the direct composite method. The effects of the different preparation methods of fiber biochar on the physical and chemical properties of the biochar–MOF composites showed that the composite prepared by the ionic liquid method with the Zeolite-type imidazolate skeleton -67 (ZIF-67) composite after high temperature treatment exhibited a better microstructure. Electrochemical tests showed that it had good specific capacity, a fast charge diffusion rate, and a relatively good electrochemical performance. The maximum specific capacity of the composite was 63.54 F/g when the current density was 0.01 A/g in 1 mol/L KCl solution. This work explored the preparation methods of fiber biochar–MOF composites and their application in the electrochemical field and detailed the relationship between the preparation methods of the composites and the electrochemical properties of the electrode materials.