Cargando…

Adsorption of Cationic Pollutants from Water by Cotton Rope Coated with Cyclodextrin Polymers

The contamination from perilous organic compounds (pesticide and dyes) in water generates a significant problem for the environment and humans. A modified textile was prepared by a coating of anionic cyclodextrin polymer, obtained from the cross-linking between citric acid and β-cyclodextrin in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Martwong, Ekkachai, Sukhawipat, Nathapong, Junthip, Jatupol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228999/
https://www.ncbi.nlm.nih.gov/pubmed/35745888
http://dx.doi.org/10.3390/polym14122312
Descripción
Sumario:The contamination from perilous organic compounds (pesticide and dyes) in water generates a significant problem for the environment and humans. A modified textile was prepared by a coating of anionic cyclodextrin polymer, obtained from the cross-linking between citric acid and β-cyclodextrin in the presence of poly (vinyl alcohol), on the cotton cord for cationic pollutant removal from an aqueous solution. Its physicochemical properties were also characterized by gravimetry, titration, stereomicroscopy, SEM, TGA, (13)C NMR, and ATR-FTIR. The CC2 system exhibited 79.2% coating yield, 1.12 mmol/g COOH groups, 91.3% paraquat (PQ) removal, 97.0% methylene blue (MB) removal, and 98.3% crystal violet (CV) removal for 25 mg/L of initial concentration. The kinetics was fitted to the pseudo-second-order model using 6 h of contact time. The isotherm was suitable for the Langmuir isotherm with a maximum adsorption of 26.9 mg/g (PQ), 23.7 mg/g (MB), and 30.3 mg/g (CV). After 120 h of contact time in water and 5% v/v of HCI in ethanol, the weight loss was 7.5% and 5.6%, respectively. Finally, the recyclability performance reached 84.8% (PQ), 95.2% (MB), and 96.9% (CV) after five reuses.