Cargando…
Generating high-fidelity synthetic time-to-event datasets to improve data transparency and accessibility
BACKGROUND: A lack of available data and statistical code being published alongside journal articles provides a significant barrier to open scientific discourse, and reproducibility of research. Information governance restrictions inhibit the active dissemination of individual level data to accompan...
Autores principales: | Smith, Aiden, Lambert, Paul C., Rutherford, Mark J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229142/ https://www.ncbi.nlm.nih.gov/pubmed/35739465 http://dx.doi.org/10.1186/s12874-022-01654-1 |
Ejemplares similares
-
Generating high-fidelity synthetic patient data for assessing machine learning healthcare software
por: Tucker, Allan, et al.
Publicado: (2020) -
Generating high-fidelity privacy-conscious synthetic patient data for causal effect estimation with multiple treatments
por: Shi, Jingpu, et al.
Publicado: (2022) -
scDesign2: a transparent simulator that generates high-fidelity single-cell gene expression count data with gene correlations captured
por: Sun, Tianyi, et al.
Publicado: (2021) -
EHR-Safe: generating high-fidelity and privacy-preserving synthetic electronic health records
por: Yoon, Jinsung, et al.
Publicado: (2023) -
Transparent access to microprocessors
por: Van der Stok, P D V
Publicado: (1980)