Cargando…
In Vitro, In Vivo and In Silico Characterization of a Novel Kappa-Opioid Receptor Antagonist
Kappa-opioid receptor (KOR) antagonists are promising innovative therapeutics for the treatment of the central nervous system (CNS) disorders. The new scaffold opioid ligand, Compound A, was originally found as a mu-opioid receptor (MOR) antagonist but its binding/selectivity and activation profile...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229160/ https://www.ncbi.nlm.nih.gov/pubmed/35745598 http://dx.doi.org/10.3390/ph15060680 |
_version_ | 1784734672757981184 |
---|---|
author | Puls, Kristina Olivé-Marti, Aina-Leonor Pach, Szymon Pinter, Birgit Erli, Filippo Wolber, Gerhard Spetea, Mariana |
author_facet | Puls, Kristina Olivé-Marti, Aina-Leonor Pach, Szymon Pinter, Birgit Erli, Filippo Wolber, Gerhard Spetea, Mariana |
author_sort | Puls, Kristina |
collection | PubMed |
description | Kappa-opioid receptor (KOR) antagonists are promising innovative therapeutics for the treatment of the central nervous system (CNS) disorders. The new scaffold opioid ligand, Compound A, was originally found as a mu-opioid receptor (MOR) antagonist but its binding/selectivity and activation profile at the KOR and delta-opioid receptor (DOR) remain elusive. In this study, we present an in vitro, in vivo and in silico characterization of Compound A by revealing this ligand as a KOR antagonist in vitro and in vivo. In the radioligand competitive binding assay, Compound A bound at the human KOR, albeit with moderate affinity, but with increased affinity than to the human MOR and without specific binding at the human DOR, thus displaying a preferential KOR selectivity profile. Following subcutaneous administration in mice, Compound A effectively reverse the antinociceptive effects of the prototypical KOR agonist, U50,488. In silico investigations were carried out to assess the structural determinants responsible for opioid receptor subtype selectivity of Compound A. Molecular docking, molecular dynamics simulations and dynamic pharmacophore (dynophore) generation revealed differences in the stabilization of the chlorophenyl moiety of Compound A within the opioid receptor binding pockets, rationalizing the experimentally determined binding affinity values. This new chemotype bears the potential for favorable ADMET properties and holds promise for chemical optimization toward the development of potential therapeutics. |
format | Online Article Text |
id | pubmed-9229160 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92291602022-06-25 In Vitro, In Vivo and In Silico Characterization of a Novel Kappa-Opioid Receptor Antagonist Puls, Kristina Olivé-Marti, Aina-Leonor Pach, Szymon Pinter, Birgit Erli, Filippo Wolber, Gerhard Spetea, Mariana Pharmaceuticals (Basel) Article Kappa-opioid receptor (KOR) antagonists are promising innovative therapeutics for the treatment of the central nervous system (CNS) disorders. The new scaffold opioid ligand, Compound A, was originally found as a mu-opioid receptor (MOR) antagonist but its binding/selectivity and activation profile at the KOR and delta-opioid receptor (DOR) remain elusive. In this study, we present an in vitro, in vivo and in silico characterization of Compound A by revealing this ligand as a KOR antagonist in vitro and in vivo. In the radioligand competitive binding assay, Compound A bound at the human KOR, albeit with moderate affinity, but with increased affinity than to the human MOR and without specific binding at the human DOR, thus displaying a preferential KOR selectivity profile. Following subcutaneous administration in mice, Compound A effectively reverse the antinociceptive effects of the prototypical KOR agonist, U50,488. In silico investigations were carried out to assess the structural determinants responsible for opioid receptor subtype selectivity of Compound A. Molecular docking, molecular dynamics simulations and dynamic pharmacophore (dynophore) generation revealed differences in the stabilization of the chlorophenyl moiety of Compound A within the opioid receptor binding pockets, rationalizing the experimentally determined binding affinity values. This new chemotype bears the potential for favorable ADMET properties and holds promise for chemical optimization toward the development of potential therapeutics. MDPI 2022-05-28 /pmc/articles/PMC9229160/ /pubmed/35745598 http://dx.doi.org/10.3390/ph15060680 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Puls, Kristina Olivé-Marti, Aina-Leonor Pach, Szymon Pinter, Birgit Erli, Filippo Wolber, Gerhard Spetea, Mariana In Vitro, In Vivo and In Silico Characterization of a Novel Kappa-Opioid Receptor Antagonist |
title | In Vitro, In Vivo and In Silico Characterization of a Novel Kappa-Opioid Receptor Antagonist |
title_full | In Vitro, In Vivo and In Silico Characterization of a Novel Kappa-Opioid Receptor Antagonist |
title_fullStr | In Vitro, In Vivo and In Silico Characterization of a Novel Kappa-Opioid Receptor Antagonist |
title_full_unstemmed | In Vitro, In Vivo and In Silico Characterization of a Novel Kappa-Opioid Receptor Antagonist |
title_short | In Vitro, In Vivo and In Silico Characterization of a Novel Kappa-Opioid Receptor Antagonist |
title_sort | in vitro, in vivo and in silico characterization of a novel kappa-opioid receptor antagonist |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229160/ https://www.ncbi.nlm.nih.gov/pubmed/35745598 http://dx.doi.org/10.3390/ph15060680 |
work_keys_str_mv | AT pulskristina invitroinvivoandinsilicocharacterizationofanovelkappaopioidreceptorantagonist AT olivemartiainaleonor invitroinvivoandinsilicocharacterizationofanovelkappaopioidreceptorantagonist AT pachszymon invitroinvivoandinsilicocharacterizationofanovelkappaopioidreceptorantagonist AT pinterbirgit invitroinvivoandinsilicocharacterizationofanovelkappaopioidreceptorantagonist AT erlifilippo invitroinvivoandinsilicocharacterizationofanovelkappaopioidreceptorantagonist AT wolbergerhard invitroinvivoandinsilicocharacterizationofanovelkappaopioidreceptorantagonist AT speteamariana invitroinvivoandinsilicocharacterizationofanovelkappaopioidreceptorantagonist |