Cargando…
Effects of Electromagnetic Fields on the Microstructure of Laser Cladding
The fast heating and quenching of laser cladding increase the internal stresses in the cladding layer. Moreover, the quick condensation of the molten pool leads to an uneven distribution of the internal elements and coarse grains of the structure. To address the above defects and increase the moldin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229161/ https://www.ncbi.nlm.nih.gov/pubmed/35744256 http://dx.doi.org/10.3390/ma15124198 |
_version_ | 1784734673021173760 |
---|---|
author | Shi, Yongjun Zhou, Xiaoyu Wang, Xiaogang Feng, Xingteng Peng, Laida |
author_facet | Shi, Yongjun Zhou, Xiaoyu Wang, Xiaogang Feng, Xingteng Peng, Laida |
author_sort | Shi, Yongjun |
collection | PubMed |
description | The fast heating and quenching of laser cladding increase the internal stresses in the cladding layer. Moreover, the quick condensation of the molten pool leads to an uneven distribution of the internal elements and coarse grains of the structure. To address the above defects and increase the molding quality of laser cladding, an electromagnetic field was introduced into the laser cladding technique, and the effects of the external assisted electromagnetic field on the mixed metal fluid in the molten pool were explored. On this basis, the action of the electromagnetic field on the flow states of the molten pool was further analyzed. The results demonstrate that after introducing electromagnetic assistance, the material flow in the molten pool accelerated as a response to the periodic changes in electromagnetic forces and the influences of the electromagnetic field on crystallization, thus refining the grains and improving the grain distribution uniformity in the cladding layer. The dendritic crystals in the cladding layer decreased, while the isometric crystals and the cellular-like dendrites increased. The element distribution in the cladding layer increased in uniformity. Additionally, this method can decrease the dilution rate of the cladding layer and improve its overall hardness. A laser-cladding test of the Ni-based powder was carried out on the AISI 1045 steel surface under the coaxial powder-feeding mode. Moreover, the influences of the electromagnetic field on the microstructure of the laser-cladding layer were compared, and the causes of the changes were disclosed. |
format | Online Article Text |
id | pubmed-9229161 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92291612022-06-25 Effects of Electromagnetic Fields on the Microstructure of Laser Cladding Shi, Yongjun Zhou, Xiaoyu Wang, Xiaogang Feng, Xingteng Peng, Laida Materials (Basel) Article The fast heating and quenching of laser cladding increase the internal stresses in the cladding layer. Moreover, the quick condensation of the molten pool leads to an uneven distribution of the internal elements and coarse grains of the structure. To address the above defects and increase the molding quality of laser cladding, an electromagnetic field was introduced into the laser cladding technique, and the effects of the external assisted electromagnetic field on the mixed metal fluid in the molten pool were explored. On this basis, the action of the electromagnetic field on the flow states of the molten pool was further analyzed. The results demonstrate that after introducing electromagnetic assistance, the material flow in the molten pool accelerated as a response to the periodic changes in electromagnetic forces and the influences of the electromagnetic field on crystallization, thus refining the grains and improving the grain distribution uniformity in the cladding layer. The dendritic crystals in the cladding layer decreased, while the isometric crystals and the cellular-like dendrites increased. The element distribution in the cladding layer increased in uniformity. Additionally, this method can decrease the dilution rate of the cladding layer and improve its overall hardness. A laser-cladding test of the Ni-based powder was carried out on the AISI 1045 steel surface under the coaxial powder-feeding mode. Moreover, the influences of the electromagnetic field on the microstructure of the laser-cladding layer were compared, and the causes of the changes were disclosed. MDPI 2022-06-13 /pmc/articles/PMC9229161/ /pubmed/35744256 http://dx.doi.org/10.3390/ma15124198 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Shi, Yongjun Zhou, Xiaoyu Wang, Xiaogang Feng, Xingteng Peng, Laida Effects of Electromagnetic Fields on the Microstructure of Laser Cladding |
title | Effects of Electromagnetic Fields on the Microstructure of Laser Cladding |
title_full | Effects of Electromagnetic Fields on the Microstructure of Laser Cladding |
title_fullStr | Effects of Electromagnetic Fields on the Microstructure of Laser Cladding |
title_full_unstemmed | Effects of Electromagnetic Fields on the Microstructure of Laser Cladding |
title_short | Effects of Electromagnetic Fields on the Microstructure of Laser Cladding |
title_sort | effects of electromagnetic fields on the microstructure of laser cladding |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229161/ https://www.ncbi.nlm.nih.gov/pubmed/35744256 http://dx.doi.org/10.3390/ma15124198 |
work_keys_str_mv | AT shiyongjun effectsofelectromagneticfieldsonthemicrostructureoflasercladding AT zhouxiaoyu effectsofelectromagneticfieldsonthemicrostructureoflasercladding AT wangxiaogang effectsofelectromagneticfieldsonthemicrostructureoflasercladding AT fengxingteng effectsofelectromagneticfieldsonthemicrostructureoflasercladding AT penglaida effectsofelectromagneticfieldsonthemicrostructureoflasercladding |