Cargando…
A New Proportionate Filtered-x RLS Algorithm for Active Noise Control System
The filtered-x recursive least square (FxRLS) algorithm is widely used in the active noise control system and has achieved great success in some complex de-noising environments, such as the cabin in vehicles and aircraft. However, its performance is sensitive to some user-defined parameters such as...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229187/ https://www.ncbi.nlm.nih.gov/pubmed/35746348 http://dx.doi.org/10.3390/s22124566 |
Sumario: | The filtered-x recursive least square (FxRLS) algorithm is widely used in the active noise control system and has achieved great success in some complex de-noising environments, such as the cabin in vehicles and aircraft. However, its performance is sensitive to some user-defined parameters such as the forgetting factor and initial gain. Once these parameters are not selected properly, the de-noising effect of FxRLS will deteriorate. Moreover, the tracking performance of FxRLS for mutation is still restricted to a certain extent. To solve the above problems, this paper proposes a new proportional FxRLS (PFxRLS) algorithm. The forgetting factor and initial gain sensitivity are successfully reduced without introducing new turning parameters. The de-noising level and tracking performance have also been improved. Moreover, the momentum technique is introduced in PFxRLS to further improve its robustness and de-noising level. To ensure stability, its convergence condition is also discussed in this paper. The effectiveness of the proposed algorithms is illustrated by simulations and experiments with different user-defined parameters and time-varying noise environments. |
---|