Cargando…
Source Attribution of Human Campylobacteriosis Using Whole-Genome Sequencing Data and Network Analysis
Campylobacter spp. are a leading and increasing cause of gastrointestinal infections worldwide. Source attribution, which apportions human infection cases to different animal species and food reservoirs, has been instrumental in control- and evidence-based intervention efforts. The rapid increase in...
Autores principales: | Wainaina, Lynda, Merlotti, Alessandra, Remondini, Daniel, Henri, Clementine, Hald, Tine, Njage, Patrick Murigu Kamau |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229307/ https://www.ncbi.nlm.nih.gov/pubmed/35745499 http://dx.doi.org/10.3390/pathogens11060645 |
Ejemplares similares
-
Comparison of Source Attribution Methodologies for Human Campylobacteriosis
por: Brinch, Maja Lykke, et al.
Publicado: (2023) -
Application of Whole‐Genome Sequences and Machine Learning in Source Attribution of Salmonella Typhimurium
por: Munck, Nanna, et al.
Publicado: (2020) -
Machine Learning Methods as a Tool for Predicting Risk of Illness Applying Next‐Generation Sequencing Data
por: Njage, Patrick Murigu Kamau, et al.
Publicado: (2018) -
Quantitative Microbial Risk Assessment Based on Whole Genome Sequencing Data: Case of Listeria monocytogenes
por: Njage, Patrick Murigu Kamau, et al.
Publicado: (2020) -
Network Approach to Source Attribution of Salmonella enterica Serovar Typhimurium and Its Monophasic Variant
por: Merlotti, Alessandra, et al.
Publicado: (2020)