Cargando…
The Application of a Hybrid Method for the Identification of Elastic–Plastic Material Parameters
The indentation test is a popular method for the investigation of the mechanical properties of materials. The technique, which combines traditional indentation tests with mapping the shape of the imprint, provides more data describing the material parameters. In this paper, such methodology is emplo...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229377/ https://www.ncbi.nlm.nih.gov/pubmed/35744195 http://dx.doi.org/10.3390/ma15124139 |
_version_ | 1784734731910250496 |
---|---|
author | Potrzeszcz-Sut, Beata Dudzik, Agnieszka |
author_facet | Potrzeszcz-Sut, Beata Dudzik, Agnieszka |
author_sort | Potrzeszcz-Sut, Beata |
collection | PubMed |
description | The indentation test is a popular method for the investigation of the mechanical properties of materials. The technique, which combines traditional indentation tests with mapping the shape of the imprint, provides more data describing the material parameters. In this paper, such methodology is employed for estimating the selected material parameters described by Ramberg–Osgood’s law, i.e., Young’s modulus, the yield point, and the material hardening exponent. Two combined identification methods were used: the P-A procedure, in which the material parameters are identified on the basis of the coordinates of the indentation curves, and the P-C procedure, which uses the coordinates describing the imprint profile. The inverse problem was solved by neural networks. The results of numerical indentation tests—pairs of coordinates describing the indentation curves and imprint profiles—were used as input data for the networks. In order to reduce the size of the input vector, a simple and effective method of approximating the branches of the curves was proposed. In the Results Section, we show the performance of the approximation as a data reduction mechanism on a synthetic dataset. The sparse model generated by the presented approach is also shown to efficiently reconstruct the data while minimizing error in the prediction of the mentioned material parameters. Our approach appeared to consistently provide better performance on the testing datasets with considerably easier computation than the principal component analysis compression results available in the literature. |
format | Online Article Text |
id | pubmed-9229377 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92293772022-06-25 The Application of a Hybrid Method for the Identification of Elastic–Plastic Material Parameters Potrzeszcz-Sut, Beata Dudzik, Agnieszka Materials (Basel) Article The indentation test is a popular method for the investigation of the mechanical properties of materials. The technique, which combines traditional indentation tests with mapping the shape of the imprint, provides more data describing the material parameters. In this paper, such methodology is employed for estimating the selected material parameters described by Ramberg–Osgood’s law, i.e., Young’s modulus, the yield point, and the material hardening exponent. Two combined identification methods were used: the P-A procedure, in which the material parameters are identified on the basis of the coordinates of the indentation curves, and the P-C procedure, which uses the coordinates describing the imprint profile. The inverse problem was solved by neural networks. The results of numerical indentation tests—pairs of coordinates describing the indentation curves and imprint profiles—were used as input data for the networks. In order to reduce the size of the input vector, a simple and effective method of approximating the branches of the curves was proposed. In the Results Section, we show the performance of the approximation as a data reduction mechanism on a synthetic dataset. The sparse model generated by the presented approach is also shown to efficiently reconstruct the data while minimizing error in the prediction of the mentioned material parameters. Our approach appeared to consistently provide better performance on the testing datasets with considerably easier computation than the principal component analysis compression results available in the literature. MDPI 2022-06-10 /pmc/articles/PMC9229377/ /pubmed/35744195 http://dx.doi.org/10.3390/ma15124139 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Potrzeszcz-Sut, Beata Dudzik, Agnieszka The Application of a Hybrid Method for the Identification of Elastic–Plastic Material Parameters |
title | The Application of a Hybrid Method for the Identification of Elastic–Plastic Material Parameters |
title_full | The Application of a Hybrid Method for the Identification of Elastic–Plastic Material Parameters |
title_fullStr | The Application of a Hybrid Method for the Identification of Elastic–Plastic Material Parameters |
title_full_unstemmed | The Application of a Hybrid Method for the Identification of Elastic–Plastic Material Parameters |
title_short | The Application of a Hybrid Method for the Identification of Elastic–Plastic Material Parameters |
title_sort | application of a hybrid method for the identification of elastic–plastic material parameters |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229377/ https://www.ncbi.nlm.nih.gov/pubmed/35744195 http://dx.doi.org/10.3390/ma15124139 |
work_keys_str_mv | AT potrzeszczsutbeata theapplicationofahybridmethodfortheidentificationofelasticplasticmaterialparameters AT dudzikagnieszka theapplicationofahybridmethodfortheidentificationofelasticplasticmaterialparameters AT potrzeszczsutbeata applicationofahybridmethodfortheidentificationofelasticplasticmaterialparameters AT dudzikagnieszka applicationofahybridmethodfortheidentificationofelasticplasticmaterialparameters |