Cargando…
Bioinspired High-Strength Montmorillonite-Alginate Hybrid Film: The Effect of Different Divalent Metal Cation Crosslinking
The natural nacre has a regular ordered layered structure of calcium carbonate tablets and ion crosslinking proteins stacked alternately, showing outstanding mechanical properties. Inspired by nacre, we fabricated different divalent metal cation-crosslinked montmorillonite-alginate hybrid films (MMT...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229400/ https://www.ncbi.nlm.nih.gov/pubmed/35746010 http://dx.doi.org/10.3390/polym14122433 |
_version_ | 1784734737934319616 |
---|---|
author | Wang, Jiaen Song, Tianliang Chen, Huaxiang Ming, Wei Cheng, Zhiming Liu, Jingwen Liang, Benliang Wang, Yuting Wang, Guangsheng |
author_facet | Wang, Jiaen Song, Tianliang Chen, Huaxiang Ming, Wei Cheng, Zhiming Liu, Jingwen Liang, Benliang Wang, Yuting Wang, Guangsheng |
author_sort | Wang, Jiaen |
collection | PubMed |
description | The natural nacre has a regular ordered layered structure of calcium carbonate tablets and ion crosslinking proteins stacked alternately, showing outstanding mechanical properties. Inspired by nacre, we fabricated different divalent metal cation-crosslinked montmorillonite-alginate hybrid films (MMT-ALG-X(2+); X(2+) = Cu(2+), Cd(2+), Ba(2+), Ca(2+), Ni(2+), Co(2+) or Mn(2+)). The effect of ionic crosslinking strength and hydrogen bond interaction on the mechanical properties of the nacre-mimetics was studied. With the cations affinities with ALG being increased (Mn(2+) < Co(2+) = Ni(2+) < Ca(2+) < Ba(2+) < Cd(2+) < Cu(2+)), the tensile strength of nacre-mimetics showed two opposite influence trends: Weak ionic crosslinking (Mn(2+), Co(2+), Ni(2+) and Ca(2+)) can synergize with hydrogen bonds to greatly increase the tensile properties of the sample; Strong ionic crosslinking (Ba(2+), Cd(2+), Cu(2+)) and hydrogen bonding form a competitive relationship, resulting in a rapid decrease in mechanical properties. Mn(2+) crosslinking generates optimal strength of 288.0 ± 15.2 MPa with an ultimate strain of 5.35 ± 0.6%, obviously superior to natural nacre (135 MPa and 2%). These excellent mechanical properties arise from the optimum synergy of ion crosslinking and interfacial hydrogen bonds between crosslinked ALG and MMT nanosheets. In addition, these metal ion-crosslinked composite films show different colors, high visible transparency, and excellent UV shielding properties. |
format | Online Article Text |
id | pubmed-9229400 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92294002022-06-25 Bioinspired High-Strength Montmorillonite-Alginate Hybrid Film: The Effect of Different Divalent Metal Cation Crosslinking Wang, Jiaen Song, Tianliang Chen, Huaxiang Ming, Wei Cheng, Zhiming Liu, Jingwen Liang, Benliang Wang, Yuting Wang, Guangsheng Polymers (Basel) Article The natural nacre has a regular ordered layered structure of calcium carbonate tablets and ion crosslinking proteins stacked alternately, showing outstanding mechanical properties. Inspired by nacre, we fabricated different divalent metal cation-crosslinked montmorillonite-alginate hybrid films (MMT-ALG-X(2+); X(2+) = Cu(2+), Cd(2+), Ba(2+), Ca(2+), Ni(2+), Co(2+) or Mn(2+)). The effect of ionic crosslinking strength and hydrogen bond interaction on the mechanical properties of the nacre-mimetics was studied. With the cations affinities with ALG being increased (Mn(2+) < Co(2+) = Ni(2+) < Ca(2+) < Ba(2+) < Cd(2+) < Cu(2+)), the tensile strength of nacre-mimetics showed two opposite influence trends: Weak ionic crosslinking (Mn(2+), Co(2+), Ni(2+) and Ca(2+)) can synergize with hydrogen bonds to greatly increase the tensile properties of the sample; Strong ionic crosslinking (Ba(2+), Cd(2+), Cu(2+)) and hydrogen bonding form a competitive relationship, resulting in a rapid decrease in mechanical properties. Mn(2+) crosslinking generates optimal strength of 288.0 ± 15.2 MPa with an ultimate strain of 5.35 ± 0.6%, obviously superior to natural nacre (135 MPa and 2%). These excellent mechanical properties arise from the optimum synergy of ion crosslinking and interfacial hydrogen bonds between crosslinked ALG and MMT nanosheets. In addition, these metal ion-crosslinked composite films show different colors, high visible transparency, and excellent UV shielding properties. MDPI 2022-06-16 /pmc/articles/PMC9229400/ /pubmed/35746010 http://dx.doi.org/10.3390/polym14122433 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Jiaen Song, Tianliang Chen, Huaxiang Ming, Wei Cheng, Zhiming Liu, Jingwen Liang, Benliang Wang, Yuting Wang, Guangsheng Bioinspired High-Strength Montmorillonite-Alginate Hybrid Film: The Effect of Different Divalent Metal Cation Crosslinking |
title | Bioinspired High-Strength Montmorillonite-Alginate Hybrid Film: The Effect of Different Divalent Metal Cation Crosslinking |
title_full | Bioinspired High-Strength Montmorillonite-Alginate Hybrid Film: The Effect of Different Divalent Metal Cation Crosslinking |
title_fullStr | Bioinspired High-Strength Montmorillonite-Alginate Hybrid Film: The Effect of Different Divalent Metal Cation Crosslinking |
title_full_unstemmed | Bioinspired High-Strength Montmorillonite-Alginate Hybrid Film: The Effect of Different Divalent Metal Cation Crosslinking |
title_short | Bioinspired High-Strength Montmorillonite-Alginate Hybrid Film: The Effect of Different Divalent Metal Cation Crosslinking |
title_sort | bioinspired high-strength montmorillonite-alginate hybrid film: the effect of different divalent metal cation crosslinking |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229400/ https://www.ncbi.nlm.nih.gov/pubmed/35746010 http://dx.doi.org/10.3390/polym14122433 |
work_keys_str_mv | AT wangjiaen bioinspiredhighstrengthmontmorillonitealginatehybridfilmtheeffectofdifferentdivalentmetalcationcrosslinking AT songtianliang bioinspiredhighstrengthmontmorillonitealginatehybridfilmtheeffectofdifferentdivalentmetalcationcrosslinking AT chenhuaxiang bioinspiredhighstrengthmontmorillonitealginatehybridfilmtheeffectofdifferentdivalentmetalcationcrosslinking AT mingwei bioinspiredhighstrengthmontmorillonitealginatehybridfilmtheeffectofdifferentdivalentmetalcationcrosslinking AT chengzhiming bioinspiredhighstrengthmontmorillonitealginatehybridfilmtheeffectofdifferentdivalentmetalcationcrosslinking AT liujingwen bioinspiredhighstrengthmontmorillonitealginatehybridfilmtheeffectofdifferentdivalentmetalcationcrosslinking AT liangbenliang bioinspiredhighstrengthmontmorillonitealginatehybridfilmtheeffectofdifferentdivalentmetalcationcrosslinking AT wangyuting bioinspiredhighstrengthmontmorillonitealginatehybridfilmtheeffectofdifferentdivalentmetalcationcrosslinking AT wangguangsheng bioinspiredhighstrengthmontmorillonitealginatehybridfilmtheeffectofdifferentdivalentmetalcationcrosslinking |