Cargando…

Bioinspired High-Strength Montmorillonite-Alginate Hybrid Film: The Effect of Different Divalent Metal Cation Crosslinking

The natural nacre has a regular ordered layered structure of calcium carbonate tablets and ion crosslinking proteins stacked alternately, showing outstanding mechanical properties. Inspired by nacre, we fabricated different divalent metal cation-crosslinked montmorillonite-alginate hybrid films (MMT...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jiaen, Song, Tianliang, Chen, Huaxiang, Ming, Wei, Cheng, Zhiming, Liu, Jingwen, Liang, Benliang, Wang, Yuting, Wang, Guangsheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229400/
https://www.ncbi.nlm.nih.gov/pubmed/35746010
http://dx.doi.org/10.3390/polym14122433
_version_ 1784734737934319616
author Wang, Jiaen
Song, Tianliang
Chen, Huaxiang
Ming, Wei
Cheng, Zhiming
Liu, Jingwen
Liang, Benliang
Wang, Yuting
Wang, Guangsheng
author_facet Wang, Jiaen
Song, Tianliang
Chen, Huaxiang
Ming, Wei
Cheng, Zhiming
Liu, Jingwen
Liang, Benliang
Wang, Yuting
Wang, Guangsheng
author_sort Wang, Jiaen
collection PubMed
description The natural nacre has a regular ordered layered structure of calcium carbonate tablets and ion crosslinking proteins stacked alternately, showing outstanding mechanical properties. Inspired by nacre, we fabricated different divalent metal cation-crosslinked montmorillonite-alginate hybrid films (MMT-ALG-X(2+); X(2+) = Cu(2+), Cd(2+), Ba(2+), Ca(2+), Ni(2+), Co(2+) or Mn(2+)). The effect of ionic crosslinking strength and hydrogen bond interaction on the mechanical properties of the nacre-mimetics was studied. With the cations affinities with ALG being increased (Mn(2+) < Co(2+) = Ni(2+) < Ca(2+) < Ba(2+) < Cd(2+) < Cu(2+)), the tensile strength of nacre-mimetics showed two opposite influence trends: Weak ionic crosslinking (Mn(2+), Co(2+), Ni(2+) and Ca(2+)) can synergize with hydrogen bonds to greatly increase the tensile properties of the sample; Strong ionic crosslinking (Ba(2+), Cd(2+), Cu(2+)) and hydrogen bonding form a competitive relationship, resulting in a rapid decrease in mechanical properties. Mn(2+) crosslinking generates optimal strength of 288.0 ± 15.2 MPa with an ultimate strain of 5.35 ± 0.6%, obviously superior to natural nacre (135 MPa and 2%). These excellent mechanical properties arise from the optimum synergy of ion crosslinking and interfacial hydrogen bonds between crosslinked ALG and MMT nanosheets. In addition, these metal ion-crosslinked composite films show different colors, high visible transparency, and excellent UV shielding properties.
format Online
Article
Text
id pubmed-9229400
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-92294002022-06-25 Bioinspired High-Strength Montmorillonite-Alginate Hybrid Film: The Effect of Different Divalent Metal Cation Crosslinking Wang, Jiaen Song, Tianliang Chen, Huaxiang Ming, Wei Cheng, Zhiming Liu, Jingwen Liang, Benliang Wang, Yuting Wang, Guangsheng Polymers (Basel) Article The natural nacre has a regular ordered layered structure of calcium carbonate tablets and ion crosslinking proteins stacked alternately, showing outstanding mechanical properties. Inspired by nacre, we fabricated different divalent metal cation-crosslinked montmorillonite-alginate hybrid films (MMT-ALG-X(2+); X(2+) = Cu(2+), Cd(2+), Ba(2+), Ca(2+), Ni(2+), Co(2+) or Mn(2+)). The effect of ionic crosslinking strength and hydrogen bond interaction on the mechanical properties of the nacre-mimetics was studied. With the cations affinities with ALG being increased (Mn(2+) < Co(2+) = Ni(2+) < Ca(2+) < Ba(2+) < Cd(2+) < Cu(2+)), the tensile strength of nacre-mimetics showed two opposite influence trends: Weak ionic crosslinking (Mn(2+), Co(2+), Ni(2+) and Ca(2+)) can synergize with hydrogen bonds to greatly increase the tensile properties of the sample; Strong ionic crosslinking (Ba(2+), Cd(2+), Cu(2+)) and hydrogen bonding form a competitive relationship, resulting in a rapid decrease in mechanical properties. Mn(2+) crosslinking generates optimal strength of 288.0 ± 15.2 MPa with an ultimate strain of 5.35 ± 0.6%, obviously superior to natural nacre (135 MPa and 2%). These excellent mechanical properties arise from the optimum synergy of ion crosslinking and interfacial hydrogen bonds between crosslinked ALG and MMT nanosheets. In addition, these metal ion-crosslinked composite films show different colors, high visible transparency, and excellent UV shielding properties. MDPI 2022-06-16 /pmc/articles/PMC9229400/ /pubmed/35746010 http://dx.doi.org/10.3390/polym14122433 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wang, Jiaen
Song, Tianliang
Chen, Huaxiang
Ming, Wei
Cheng, Zhiming
Liu, Jingwen
Liang, Benliang
Wang, Yuting
Wang, Guangsheng
Bioinspired High-Strength Montmorillonite-Alginate Hybrid Film: The Effect of Different Divalent Metal Cation Crosslinking
title Bioinspired High-Strength Montmorillonite-Alginate Hybrid Film: The Effect of Different Divalent Metal Cation Crosslinking
title_full Bioinspired High-Strength Montmorillonite-Alginate Hybrid Film: The Effect of Different Divalent Metal Cation Crosslinking
title_fullStr Bioinspired High-Strength Montmorillonite-Alginate Hybrid Film: The Effect of Different Divalent Metal Cation Crosslinking
title_full_unstemmed Bioinspired High-Strength Montmorillonite-Alginate Hybrid Film: The Effect of Different Divalent Metal Cation Crosslinking
title_short Bioinspired High-Strength Montmorillonite-Alginate Hybrid Film: The Effect of Different Divalent Metal Cation Crosslinking
title_sort bioinspired high-strength montmorillonite-alginate hybrid film: the effect of different divalent metal cation crosslinking
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229400/
https://www.ncbi.nlm.nih.gov/pubmed/35746010
http://dx.doi.org/10.3390/polym14122433
work_keys_str_mv AT wangjiaen bioinspiredhighstrengthmontmorillonitealginatehybridfilmtheeffectofdifferentdivalentmetalcationcrosslinking
AT songtianliang bioinspiredhighstrengthmontmorillonitealginatehybridfilmtheeffectofdifferentdivalentmetalcationcrosslinking
AT chenhuaxiang bioinspiredhighstrengthmontmorillonitealginatehybridfilmtheeffectofdifferentdivalentmetalcationcrosslinking
AT mingwei bioinspiredhighstrengthmontmorillonitealginatehybridfilmtheeffectofdifferentdivalentmetalcationcrosslinking
AT chengzhiming bioinspiredhighstrengthmontmorillonitealginatehybridfilmtheeffectofdifferentdivalentmetalcationcrosslinking
AT liujingwen bioinspiredhighstrengthmontmorillonitealginatehybridfilmtheeffectofdifferentdivalentmetalcationcrosslinking
AT liangbenliang bioinspiredhighstrengthmontmorillonitealginatehybridfilmtheeffectofdifferentdivalentmetalcationcrosslinking
AT wangyuting bioinspiredhighstrengthmontmorillonitealginatehybridfilmtheeffectofdifferentdivalentmetalcationcrosslinking
AT wangguangsheng bioinspiredhighstrengthmontmorillonitealginatehybridfilmtheeffectofdifferentdivalentmetalcationcrosslinking