Cargando…
A Low-Complexity Algorithm for a Reinforcement Learning-Based Channel Estimator for MIMO Systems
This paper proposes a low-complexity algorithm for a reinforcement learning-based channel estimator for multiple-input multiple-output systems. The proposed channel estimator utilizes detected symbols to reduce the channel estimation error. However, the detected data symbols may include errors at th...
Autores principales: | Kim, Tae-Kyoung, Min, Moonsik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229451/ https://www.ncbi.nlm.nih.gov/pubmed/35746162 http://dx.doi.org/10.3390/s22124379 |
Ejemplares similares
-
Reinforcement Learning-Aided Channel Estimator in Time-Varying MIMO Systems
por: Kim, Tae-Kyoung, et al.
Publicado: (2023) -
Spherical-Cap Approximation of Vector Quantization for Quantization-Based Combining in MIMO Broadcast Channels with Limited Feedback
por: Min, Moonsik, et al.
Publicado: (2022) -
Deep Learning for Joint Pilot Design and Channel Estimation in MIMO-OFDM Systems
por: Kang, Xiao-Fei, et al.
Publicado: (2022) -
Antenna Placement Optimization for Distributed MIMO Radar Based on a Reinforcement Learning Algorithm
por: Zhu, Jin, et al.
Publicado: (2023) -
FDD Channel Estimation Via Covariance Estimation in Wideband Massive MIMO Systems
por: González-Coma, José P., et al.
Publicado: (2020)