Cargando…
Markov Transition Field Enhanced Deep Domain Adaptation Network for Milling Tool Condition Monitoring
Tool condition monitoring (TCM) is of great importance for improving the manufacturing efficiency and surface quality of workpieces. Data-driven machine learning methods are widely used in TCM and have achieved many good results. However, in actual industrial scenes, labeled data are not available i...
Autores principales: | Sun, Wei, Zhou, Jie, Sun, Bintao, Zhou, Yuqing, Jiang, Yongying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229539/ https://www.ncbi.nlm.nih.gov/pubmed/35744487 http://dx.doi.org/10.3390/mi13060873 |
Ejemplares similares
-
A Multisensor Fusion Method for Tool Condition Monitoring in Milling
por: Zhou, Yuqing, et al.
Publicado: (2018) -
Digital Twin-Driven Tool Condition Monitoring for the Milling Process
por: Natarajan, Sriraamshanjiev, et al.
Publicado: (2023) -
WPD-Enhanced Deep Graph Contrastive Learning Data Fusion for Fault Diagnosis of Rolling Bearing
por: Liu, Ruozhu, et al.
Publicado: (2023) -
Application of Machine Learning Algorithms for Tool Condition Monitoring in Milling Chipboard Process
por: Przybyś-Małaczek, Agata, et al.
Publicado: (2023) -
Testing for the Markov property in time series via deep conditional generative learning
por: Zhou, Yunzhe, et al.
Publicado: (2023)