Cargando…

MoO(3)@MoS(2) Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries

We explore a phase engineering strategy to improve the electrochemical performance of transition metal sulfides (TMSs) in anode materials for lithium-ion batteries (LIBs). A one-pot hydrothermal approach has been employed to synthesize MoS(2) nanostructures. MoS(2) and MoO(3) phases can be readily c...

Descripción completa

Detalles Bibliográficos
Autores principales: Faizan, Muhammad, Hussain, Sajjad, Islam, Mobinul, Kim, Ji-Young, Han, Daseul, Bae, Jee-Hwan, Vikraman, Dhanasekaran, Ali, Basit, Abbas, Saleem, Kim, Hyun-Seok, Singh, Aditya Narayan, Jung, Jongwan, Nam, Kyung-Wan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229638/
https://www.ncbi.nlm.nih.gov/pubmed/35745349
http://dx.doi.org/10.3390/nano12122008
_version_ 1784734799705931776
author Faizan, Muhammad
Hussain, Sajjad
Islam, Mobinul
Kim, Ji-Young
Han, Daseul
Bae, Jee-Hwan
Vikraman, Dhanasekaran
Ali, Basit
Abbas, Saleem
Kim, Hyun-Seok
Singh, Aditya Narayan
Jung, Jongwan
Nam, Kyung-Wan
author_facet Faizan, Muhammad
Hussain, Sajjad
Islam, Mobinul
Kim, Ji-Young
Han, Daseul
Bae, Jee-Hwan
Vikraman, Dhanasekaran
Ali, Basit
Abbas, Saleem
Kim, Hyun-Seok
Singh, Aditya Narayan
Jung, Jongwan
Nam, Kyung-Wan
author_sort Faizan, Muhammad
collection PubMed
description We explore a phase engineering strategy to improve the electrochemical performance of transition metal sulfides (TMSs) in anode materials for lithium-ion batteries (LIBs). A one-pot hydrothermal approach has been employed to synthesize MoS(2) nanostructures. MoS(2) and MoO(3) phases can be readily controlled by straightforward calcination in the (200–300) °C temperature range. An optimized temperature of 250 °C yields a phase-engineered MoO(3)@MoS(2) hybrid, while 200 and 300 °C produce single MoS(2) and MoO(3) phases. When tested in LIBs anode, the optimized MoO(3)@MoS(2) hybrid outperforms the pristine MoS(2) and MoO(3) counterparts. With above 99% Coulombic efficiency (CE), the hybrid anode retains its capacity of 564 mAh g(−1) after 100 cycles, and maintains a capacity of 278 mAh g(−1) at 700 mA g(−1) current density. These favorable characteristics are attributed to the formation of MoO(3) passivation surface layer on MoS(2) and reactive interfaces between the two phases, which facilitate the Li-ion insertion/extraction, successively improving MoO(3)@MoS(2) anode performance.
format Online
Article
Text
id pubmed-9229638
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-92296382022-06-25 MoO(3)@MoS(2) Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries Faizan, Muhammad Hussain, Sajjad Islam, Mobinul Kim, Ji-Young Han, Daseul Bae, Jee-Hwan Vikraman, Dhanasekaran Ali, Basit Abbas, Saleem Kim, Hyun-Seok Singh, Aditya Narayan Jung, Jongwan Nam, Kyung-Wan Nanomaterials (Basel) Article We explore a phase engineering strategy to improve the electrochemical performance of transition metal sulfides (TMSs) in anode materials for lithium-ion batteries (LIBs). A one-pot hydrothermal approach has been employed to synthesize MoS(2) nanostructures. MoS(2) and MoO(3) phases can be readily controlled by straightforward calcination in the (200–300) °C temperature range. An optimized temperature of 250 °C yields a phase-engineered MoO(3)@MoS(2) hybrid, while 200 and 300 °C produce single MoS(2) and MoO(3) phases. When tested in LIBs anode, the optimized MoO(3)@MoS(2) hybrid outperforms the pristine MoS(2) and MoO(3) counterparts. With above 99% Coulombic efficiency (CE), the hybrid anode retains its capacity of 564 mAh g(−1) after 100 cycles, and maintains a capacity of 278 mAh g(−1) at 700 mA g(−1) current density. These favorable characteristics are attributed to the formation of MoO(3) passivation surface layer on MoS(2) and reactive interfaces between the two phases, which facilitate the Li-ion insertion/extraction, successively improving MoO(3)@MoS(2) anode performance. MDPI 2022-06-10 /pmc/articles/PMC9229638/ /pubmed/35745349 http://dx.doi.org/10.3390/nano12122008 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Faizan, Muhammad
Hussain, Sajjad
Islam, Mobinul
Kim, Ji-Young
Han, Daseul
Bae, Jee-Hwan
Vikraman, Dhanasekaran
Ali, Basit
Abbas, Saleem
Kim, Hyun-Seok
Singh, Aditya Narayan
Jung, Jongwan
Nam, Kyung-Wan
MoO(3)@MoS(2) Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries
title MoO(3)@MoS(2) Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries
title_full MoO(3)@MoS(2) Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries
title_fullStr MoO(3)@MoS(2) Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries
title_full_unstemmed MoO(3)@MoS(2) Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries
title_short MoO(3)@MoS(2) Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries
title_sort moo(3)@mos(2) core-shell structured hybrid anode materials for lithium-ion batteries
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229638/
https://www.ncbi.nlm.nih.gov/pubmed/35745349
http://dx.doi.org/10.3390/nano12122008
work_keys_str_mv AT faizanmuhammad moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries
AT hussainsajjad moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries
AT islammobinul moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries
AT kimjiyoung moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries
AT handaseul moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries
AT baejeehwan moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries
AT vikramandhanasekaran moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries
AT alibasit moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries
AT abbassaleem moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries
AT kimhyunseok moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries
AT singhadityanarayan moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries
AT jungjongwan moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries
AT namkyungwan moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries