Cargando…
MoO(3)@MoS(2) Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries
We explore a phase engineering strategy to improve the electrochemical performance of transition metal sulfides (TMSs) in anode materials for lithium-ion batteries (LIBs). A one-pot hydrothermal approach has been employed to synthesize MoS(2) nanostructures. MoS(2) and MoO(3) phases can be readily c...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229638/ https://www.ncbi.nlm.nih.gov/pubmed/35745349 http://dx.doi.org/10.3390/nano12122008 |
_version_ | 1784734799705931776 |
---|---|
author | Faizan, Muhammad Hussain, Sajjad Islam, Mobinul Kim, Ji-Young Han, Daseul Bae, Jee-Hwan Vikraman, Dhanasekaran Ali, Basit Abbas, Saleem Kim, Hyun-Seok Singh, Aditya Narayan Jung, Jongwan Nam, Kyung-Wan |
author_facet | Faizan, Muhammad Hussain, Sajjad Islam, Mobinul Kim, Ji-Young Han, Daseul Bae, Jee-Hwan Vikraman, Dhanasekaran Ali, Basit Abbas, Saleem Kim, Hyun-Seok Singh, Aditya Narayan Jung, Jongwan Nam, Kyung-Wan |
author_sort | Faizan, Muhammad |
collection | PubMed |
description | We explore a phase engineering strategy to improve the electrochemical performance of transition metal sulfides (TMSs) in anode materials for lithium-ion batteries (LIBs). A one-pot hydrothermal approach has been employed to synthesize MoS(2) nanostructures. MoS(2) and MoO(3) phases can be readily controlled by straightforward calcination in the (200–300) °C temperature range. An optimized temperature of 250 °C yields a phase-engineered MoO(3)@MoS(2) hybrid, while 200 and 300 °C produce single MoS(2) and MoO(3) phases. When tested in LIBs anode, the optimized MoO(3)@MoS(2) hybrid outperforms the pristine MoS(2) and MoO(3) counterparts. With above 99% Coulombic efficiency (CE), the hybrid anode retains its capacity of 564 mAh g(−1) after 100 cycles, and maintains a capacity of 278 mAh g(−1) at 700 mA g(−1) current density. These favorable characteristics are attributed to the formation of MoO(3) passivation surface layer on MoS(2) and reactive interfaces between the two phases, which facilitate the Li-ion insertion/extraction, successively improving MoO(3)@MoS(2) anode performance. |
format | Online Article Text |
id | pubmed-9229638 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92296382022-06-25 MoO(3)@MoS(2) Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries Faizan, Muhammad Hussain, Sajjad Islam, Mobinul Kim, Ji-Young Han, Daseul Bae, Jee-Hwan Vikraman, Dhanasekaran Ali, Basit Abbas, Saleem Kim, Hyun-Seok Singh, Aditya Narayan Jung, Jongwan Nam, Kyung-Wan Nanomaterials (Basel) Article We explore a phase engineering strategy to improve the electrochemical performance of transition metal sulfides (TMSs) in anode materials for lithium-ion batteries (LIBs). A one-pot hydrothermal approach has been employed to synthesize MoS(2) nanostructures. MoS(2) and MoO(3) phases can be readily controlled by straightforward calcination in the (200–300) °C temperature range. An optimized temperature of 250 °C yields a phase-engineered MoO(3)@MoS(2) hybrid, while 200 and 300 °C produce single MoS(2) and MoO(3) phases. When tested in LIBs anode, the optimized MoO(3)@MoS(2) hybrid outperforms the pristine MoS(2) and MoO(3) counterparts. With above 99% Coulombic efficiency (CE), the hybrid anode retains its capacity of 564 mAh g(−1) after 100 cycles, and maintains a capacity of 278 mAh g(−1) at 700 mA g(−1) current density. These favorable characteristics are attributed to the formation of MoO(3) passivation surface layer on MoS(2) and reactive interfaces between the two phases, which facilitate the Li-ion insertion/extraction, successively improving MoO(3)@MoS(2) anode performance. MDPI 2022-06-10 /pmc/articles/PMC9229638/ /pubmed/35745349 http://dx.doi.org/10.3390/nano12122008 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Faizan, Muhammad Hussain, Sajjad Islam, Mobinul Kim, Ji-Young Han, Daseul Bae, Jee-Hwan Vikraman, Dhanasekaran Ali, Basit Abbas, Saleem Kim, Hyun-Seok Singh, Aditya Narayan Jung, Jongwan Nam, Kyung-Wan MoO(3)@MoS(2) Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries |
title | MoO(3)@MoS(2) Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries |
title_full | MoO(3)@MoS(2) Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries |
title_fullStr | MoO(3)@MoS(2) Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries |
title_full_unstemmed | MoO(3)@MoS(2) Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries |
title_short | MoO(3)@MoS(2) Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries |
title_sort | moo(3)@mos(2) core-shell structured hybrid anode materials for lithium-ion batteries |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229638/ https://www.ncbi.nlm.nih.gov/pubmed/35745349 http://dx.doi.org/10.3390/nano12122008 |
work_keys_str_mv | AT faizanmuhammad moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries AT hussainsajjad moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries AT islammobinul moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries AT kimjiyoung moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries AT handaseul moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries AT baejeehwan moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries AT vikramandhanasekaran moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries AT alibasit moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries AT abbassaleem moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries AT kimhyunseok moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries AT singhadityanarayan moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries AT jungjongwan moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries AT namkyungwan moo3mos2coreshellstructuredhybridanodematerialsforlithiumionbatteries |