Cargando…
Dual U-Net-Based Conditional Generative Adversarial Network for Blood Vessel Segmentation with Reduced Cerebral MR Training Volumes
Segmenting vessels in brain images is a critical step for many medical interventions and diagnoses of illnesses. Recent advances in artificial intelligence provide better models, achieving a human-like level of expertise in many tasks. In this paper, we present a new approach to segment Time-of-Flig...
Autores principales: | Quintana-Quintana, Oliver J., De León-Cuevas, Alejandro, González-Gutiérrez, Arturo, Gorrostieta-Hurtado, Efrén, Tovar-Arriaga, Saúl |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229670/ https://www.ncbi.nlm.nih.gov/pubmed/35744437 http://dx.doi.org/10.3390/mi13060823 |
Ejemplares similares
-
A Fully Sensorized Cooperative Robotic System for Surgical Interventions
por: Tovar-Arriaga, Saúl, et al.
Publicado: (2012) -
End-to-End Automatic Classification of Retinal Vessel Based on Generative Adversarial Networks with Improved U-Net
por: Zhang, Jieni, et al.
Publicado: (2023) -
Generative Adversarial Network Combined with SE-ResNet and Dilated Inception Block for Segmenting Retinal Vessels
por: Yue, Chen, et al.
Publicado: (2022) -
Attention‐guided duplex adversarial U‐net for pancreatic segmentation from computed tomography images
por: Li, Meiyu, et al.
Publicado: (2022) -
Coronary Vessel Segmentation by Coarse-to-Fine Strategy Using U-nets
por: Thuy, Le Nhi Lam, et al.
Publicado: (2021)