Cargando…
Predicting the Compressive Strength of the Cement-Fly Ash–Slag Ternary Concrete Using the Firefly Algorithm (FA) and Random Forest (RF) Hybrid Machine-Learning Method
Concrete is the most widely used material in construction. It has the characteristics of strong plasticity, good economy, high safety, and good durability. As a kind of structural material, concrete must have sufficient strength to resist various loads. At the same time, due to the brittleness of co...
Autores principales: | Huang, Jiandong, Sabri, Mohanad Muayad Sabri, Ulrikh, Dmitrii Vladimirovich, Ahmad, Mahmood, Alsaffar, Kifayah Abood Mohammed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229672/ https://www.ncbi.nlm.nih.gov/pubmed/35744249 http://dx.doi.org/10.3390/ma15124193 |
Ejemplares similares
-
Soil Injection Technology Using an Expandable Polyurethane Resin: A Review
por: Sabri, Mohanad Muayad Sabri, et al.
Publicado: (2021) -
Intelligent Design of Building Materials: Development of an AI-Based Method for Cement-Slag Concrete Design
por: Zhu, Fei, et al.
Publicado: (2022) -
The Efficiency of Hybrid Intelligent Models in Predicting Fiber-Reinforced Polymer Concrete Interfacial-Bond Strength
por: Barkhordari, Mohammad Sadegh, et al.
Publicado: (2022) -
Prediction of Bearing Capacity of the Square Concrete-Filled Steel Tube Columns: An Application of Metaheuristic-Based Neural Network Models
por: Sarir, Payam, et al.
Publicado: (2022) -
Intelligent Design of Construction Materials: A Comparative Study of AI Approaches for Predicting the Strength of Concrete with Blast Furnace Slag
por: Wu, Xiangping, et al.
Publicado: (2022)