Cargando…
CAP-YOLO: Channel Attention Based Pruning YOLO for Coal Mine Real-Time Intelligent Monitoring
Real-time coal mine intelligent monitoring for pedestrian identifying and positioning is an important means to ensure safety in production. Traditional object detection models based on neural networks require significant computational and storage resources, which results in difficulty of deploying m...
Autores principales: | Xu, Zhi, Li, Jingzhao, Meng, Yifan, Zhang, Xiaoming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229694/ https://www.ncbi.nlm.nih.gov/pubmed/35746116 http://dx.doi.org/10.3390/s22124331 |
Ejemplares similares
-
CAA-YOLO: Combined-Attention-Augmented YOLO for Infrared Ocean Ships Detection
por: Ye, Jing, et al.
Publicado: (2022) -
YOLO-G: Improved YOLO for cross-domain object detection
por: Wei, Jian, et al.
Publicado: (2023) -
AIE-YOLO: Auxiliary Information Enhanced YOLO for Small Object Detection
por: Yan, Bingnan, et al.
Publicado: (2022) -
YOLO-SASE: An Improved YOLO Algorithm for the Small Targets Detection in Complex Backgrounds
por: Zhou, Xiao, et al.
Publicado: (2022) -
Efficient-Lightweight YOLO: Improving Small Object Detection in YOLO for Aerial Images
por: Hu, Mengzi, et al.
Publicado: (2023)