Cargando…

TLS-Detectable Plane Changes for Deformation Monitoring

TLS is nowadays often used for deformation monitoring. As it is not able to scan identical points in different time epochs, mathematical models of objects derived from point clouds have to be used. The most common geometric form to describe built objects is a plane, which can be described by four pa...

Descripción completa

Detalles Bibliográficos
Autores principales: Kregar, Klemen, Marjetič, Aleš, Savšek, Simona
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229725/
https://www.ncbi.nlm.nih.gov/pubmed/35746274
http://dx.doi.org/10.3390/s22124493
Descripción
Sumario:TLS is nowadays often used for deformation monitoring. As it is not able to scan identical points in different time epochs, mathematical models of objects derived from point clouds have to be used. The most common geometric form to describe built objects is a plane, which can be described by four parameters. In this study, we aimed to find out how small changes in the parameters of the plane can be detected by TLS. We aimed to eliminate all possible factors that influence the scanning. Then, we shifted and tilted a finite physical representation of a plane in a controlled way. After each controlled change, the board was scanned several times and the parameters of the plane were calculated. We used two different types of scanning devices and compared their performance. The changes in the plane parameters were compared with the actual change values and statistically tested. The results show that TLS detects shifts in the millimetre range and tilts of 150″ (for a 1 m plane). A robotic total station can achieve twice the precision of TLS despite lower density and slower performance. For deformation monitoring, we strongly recommend repeating each scan several times (i) to check for gross errors and (ii) to obtain a realistic precision estimate.