Cargando…
Application of Artificial Intelligence Methods for Predicting the Compressive Strength of Self-Compacting Concrete with Class F Fly Ash
Replacing a specified quantity of cement with Class F fly ash contributes to sustainable development and reducing the greenhouse effect. In order to use Class F fly ash in self-compacting concrete (SCC), a prediction model that will give a satisfactory accuracy value for the compressive strength of...
Autores principales: | Kovačević, Miljan, Lozančić, Silva, Nyarko, Emmanuel Karlo, Hadzima-Nyarko, Marijana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229836/ https://www.ncbi.nlm.nih.gov/pubmed/35744253 http://dx.doi.org/10.3390/ma15124191 |
Ejemplares similares
-
Modeling of Compressive Strength of Self-Compacting Rubberized Concrete Using Machine Learning
por: Kovačević, Miljan, et al.
Publicado: (2021) -
Modelling the Influence of Waste Rubber on Compressive Strength of Concrete by Artificial Neural Networks
por: Hadzima-Nyarko, Marijana, et al.
Publicado: (2019) -
Application of Shape Memory Alloys in Retrofitting of Masonry and Heritage Structures Based on Their Vulnerability Revealed in the Bam 2003 Earthquake
por: Tabrizikahou, Alireza, et al.
Publicado: (2021) -
Modelling daily water temperature from air temperature for the Missouri River
por: Zhu, Senlin, et al.
Publicado: (2018) -
Compressive Strength Estimation of Fly Ash/Slag Based Green Concrete by Deploying Artificial Intelligence Models
por: Khan, Kaffayatullah, et al.
Publicado: (2022)