Cargando…

Body Composition-Specific Asthma Phenotypes: Clinical Implications

Background: Previous studies have indicated the limitations of body mass index for defining disease phenotypes. The description of asthma phenotypes based on body composition (BC) has not been largely reported. Objective: To identify and characterize phenotypes based on BC parameters in patients wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xin, Deng, Ke, Yuan, Yulai, Liu, Lei, Zhang, Shuwen, Wang, Changyong, Wang, Gang, Zhang, Hongping, Wang, Lei, Cheng, Gaiping, Wood, Lisa G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229860/
https://www.ncbi.nlm.nih.gov/pubmed/35745259
http://dx.doi.org/10.3390/nu14122525
Descripción
Sumario:Background: Previous studies have indicated the limitations of body mass index for defining disease phenotypes. The description of asthma phenotypes based on body composition (BC) has not been largely reported. Objective: To identify and characterize phenotypes based on BC parameters in patients with asthma. Methods: A study with two prospective observational cohorts analyzing adult patients with stable asthma (n = 541 for training and n = 179 for validation) was conducted. A body composition analysis was performed for the included patients. A cluster analysis was conducted by applying a 2-step process with stepwise discriminant analysis. Logistic regression models were used to evaluate the association between identified phenotypes and asthma exacerbations (AEs). The same algorithm for cluster analysis in the independent validation set was used to perform an external validation. Results: Three clusters had significantly different characteristics associated with asthma outcomes. An external validation identified the similarity of the participants in training and the validation set. In the training set, cluster Training (T) 1 (29.4%) was “patients with undernutrition”, cluster T2 (18.9%) was “intermediate level of nutrition with psychological dysfunction”, and cluster T3 (51.8%) was “patients with good nutrition”. Cluster T3 had a decreased risk of moderate-to-severe and severe AEs in the following year compared with the other two clusters. The most important BC-specific factors contributing to being accurately assigned to one of these three clusters were skeletal muscle mass and visceral fat area. Conclusion: We defined three distinct clusters of asthma patients, which had distinct clinical features and asthma outcomes. Our data reinforced the importance of evaluating BC to determining nutritional status in clinical practice.