Cargando…
Using machine learning to predict subsequent events after EMS non-conveyance decisions
BACKGROUND: Predictors of subsequent events after Emergency Medical Services (EMS) non-conveyance decisions are still unclear, though patient safety is the priority in prehospital emergency care. The aim of this study was to find out whether machine learning can be used in this context and to identi...
Autores principales: | Paulin, Jani, Reunamo, Akseli, Kurola, Jouni, Moen, Hans, Salanterä, Sanna, Riihimäki, Heikki, Vesanen, Tero, Koivisto, Mari, Iirola, Timo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229877/ https://www.ncbi.nlm.nih.gov/pubmed/35739501 http://dx.doi.org/10.1186/s12911-022-01901-x |
Ejemplares similares
-
Changing role of EMS –analyses of non-conveyed and conveyed patients in Finland
por: Paulin, Jani, et al.
Publicado: (2020) -
EMS non-conveyance: A safe practice to decrease ED crowding or a threat to patient safety?
por: Paulin, Jani, et al.
Publicado: (2021) -
Rethinking non-urgent EMS conveyance to ED during night-time - a pilot study in Southwest Finland
por: Kasvi, Aleksi, et al.
Publicado: (2023) -
How GPs can Recognize Persistent Frequent Attenders at Finnish Primary Health Care Using Electronic Patient Records
por: Santalahti, Anne, et al.
Publicado: (2021) -
Development and implementation of a geographical area categorisation method with targeted performance indicators for nationwide EMS in Finland
por: Pappinen, Jukka, et al.
Publicado: (2018)