Cargando…
A Comparison of Machine Learning Tools That Model the Splitting Tensile Strength of Self-Compacting Recycled Aggregate Concrete
Several types of research currently use machine learning (ML) methods to estimate the mechanical characteristics of concrete. This study aimed to compare the capacities of four ML methods: eXtreme gradient boosting (XG Boost), gradient boosting (GB), Cat boosting (CB), and extra trees regressor (ETR...
Autores principales: | de-Prado-Gil, Jesús, Palencia, Covadonga, Jagadesh, P., Martínez-García, Rebeca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229901/ https://www.ncbi.nlm.nih.gov/pubmed/35744223 http://dx.doi.org/10.3390/ma15124164 |
Ejemplares similares
-
Impact of Design Parameters on the Ratio of Compressive to Split Tensile Strength of Self-Compacting Concrete with Recycled Aggregate
por: Martínez-García, Rebeca, et al.
Publicado: (2021) -
A Study on the Prediction of Compressive Strength of Self-Compacting Recycled Aggregate Concrete Utilizing Novel Computational Approaches
por: de-Prado-Gil, Jesús, et al.
Publicado: (2022) -
Physics-assisted machine learning methods for predicting the splitting tensile strength of recycled aggregate concrete
por: Liu, Jianguo, et al.
Publicado: (2023) -
Split Tensile Strength Prediction of Recycled Aggregate-Based Sustainable Concrete Using Artificial Intelligence Methods
por: Amin, Muhammad Nasir, et al.
Publicado: (2022) -
Influence of Design Parameters on Fresh Properties of Self-Compacting Concrete with Recycled Aggregate—A Review
por: Martínez-García, Rebeca, et al.
Publicado: (2020)