Cargando…

UVB Irradiation-Induced Transcriptional Changes in Lignin- and Flavonoid Biosynthesis and Indole/Tryptophan-Auxin-Responsive Genes in Rice Seedlings

Global warming accelerates the destruction of the ozone layer, increasing the amount of UVB reaching the Earth’s surface, which in turn alters plant growth and development. The effects of UVB-induced alterations of plant secondary and cell wall metabolism were previously documented; however, there i...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Ga-Eun, Kim, Me-Sun, Sung, Jwakyung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229965/
https://www.ncbi.nlm.nih.gov/pubmed/35736769
http://dx.doi.org/10.3390/plants11121618
_version_ 1784734913606451200
author Kim, Ga-Eun
Kim, Me-Sun
Sung, Jwakyung
author_facet Kim, Ga-Eun
Kim, Me-Sun
Sung, Jwakyung
author_sort Kim, Ga-Eun
collection PubMed
description Global warming accelerates the destruction of the ozone layer, increasing the amount of UVB reaching the Earth’s surface, which in turn alters plant growth and development. The effects of UVB-induced alterations of plant secondary and cell wall metabolism were previously documented; however, there is little knowledge of its effects on rice seedlings during the developmental phase of leaves. In this study, we examined secondary metabolic responses to UVB stress using a transcriptomic approach, focusing on the biosynthetic pathways for lignin, flavonoid, and indole/tryptophan-auxin responses. As new leaves emerged, they were irradiated with UVB for 5 days (for 3 h/day(−1)). The genes encoding the enzymes related to lignin (4CL, CAD, and POD) and flavonoid biosynthesis (CHS, CHI, and FLS) were highly expressed on day 1 (younger leaves) and day 5 (older leaves) after UVB irradiation. The expression of the genes encoding the enzymes related to tryptophan biosynthesis (AS, PRT, PRAI, IGPS, and TS) increased on day 3 of UVB irradiation, and the level of tryptophan increased and showed the same temporal pattern of occurrence as the expression of the cognate gene. Interestingly, the genes encoding BBX4 and BBX11, negative regulators of UVB signaling, and SAUR27 and SAUR55, auxin response enzymes, were downregulated on day 3 of UVB irradiation. When these results are taken together, they suggest that secondary metabolic pathways in rice seedlings are influenced by the interaction between UVB irradiation and the leaf developmental stage. Thus, the strategies of protection against, adaptation to, and mitigation of UVB might be delicately regulated, and, in this context, our data provide valuable information to understand UVB-induced secondary metabolism in rice seedlings.
format Online
Article
Text
id pubmed-9229965
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-92299652022-06-25 UVB Irradiation-Induced Transcriptional Changes in Lignin- and Flavonoid Biosynthesis and Indole/Tryptophan-Auxin-Responsive Genes in Rice Seedlings Kim, Ga-Eun Kim, Me-Sun Sung, Jwakyung Plants (Basel) Article Global warming accelerates the destruction of the ozone layer, increasing the amount of UVB reaching the Earth’s surface, which in turn alters plant growth and development. The effects of UVB-induced alterations of plant secondary and cell wall metabolism were previously documented; however, there is little knowledge of its effects on rice seedlings during the developmental phase of leaves. In this study, we examined secondary metabolic responses to UVB stress using a transcriptomic approach, focusing on the biosynthetic pathways for lignin, flavonoid, and indole/tryptophan-auxin responses. As new leaves emerged, they were irradiated with UVB for 5 days (for 3 h/day(−1)). The genes encoding the enzymes related to lignin (4CL, CAD, and POD) and flavonoid biosynthesis (CHS, CHI, and FLS) were highly expressed on day 1 (younger leaves) and day 5 (older leaves) after UVB irradiation. The expression of the genes encoding the enzymes related to tryptophan biosynthesis (AS, PRT, PRAI, IGPS, and TS) increased on day 3 of UVB irradiation, and the level of tryptophan increased and showed the same temporal pattern of occurrence as the expression of the cognate gene. Interestingly, the genes encoding BBX4 and BBX11, negative regulators of UVB signaling, and SAUR27 and SAUR55, auxin response enzymes, were downregulated on day 3 of UVB irradiation. When these results are taken together, they suggest that secondary metabolic pathways in rice seedlings are influenced by the interaction between UVB irradiation and the leaf developmental stage. Thus, the strategies of protection against, adaptation to, and mitigation of UVB might be delicately regulated, and, in this context, our data provide valuable information to understand UVB-induced secondary metabolism in rice seedlings. MDPI 2022-06-20 /pmc/articles/PMC9229965/ /pubmed/35736769 http://dx.doi.org/10.3390/plants11121618 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kim, Ga-Eun
Kim, Me-Sun
Sung, Jwakyung
UVB Irradiation-Induced Transcriptional Changes in Lignin- and Flavonoid Biosynthesis and Indole/Tryptophan-Auxin-Responsive Genes in Rice Seedlings
title UVB Irradiation-Induced Transcriptional Changes in Lignin- and Flavonoid Biosynthesis and Indole/Tryptophan-Auxin-Responsive Genes in Rice Seedlings
title_full UVB Irradiation-Induced Transcriptional Changes in Lignin- and Flavonoid Biosynthesis and Indole/Tryptophan-Auxin-Responsive Genes in Rice Seedlings
title_fullStr UVB Irradiation-Induced Transcriptional Changes in Lignin- and Flavonoid Biosynthesis and Indole/Tryptophan-Auxin-Responsive Genes in Rice Seedlings
title_full_unstemmed UVB Irradiation-Induced Transcriptional Changes in Lignin- and Flavonoid Biosynthesis and Indole/Tryptophan-Auxin-Responsive Genes in Rice Seedlings
title_short UVB Irradiation-Induced Transcriptional Changes in Lignin- and Flavonoid Biosynthesis and Indole/Tryptophan-Auxin-Responsive Genes in Rice Seedlings
title_sort uvb irradiation-induced transcriptional changes in lignin- and flavonoid biosynthesis and indole/tryptophan-auxin-responsive genes in rice seedlings
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229965/
https://www.ncbi.nlm.nih.gov/pubmed/35736769
http://dx.doi.org/10.3390/plants11121618
work_keys_str_mv AT kimgaeun uvbirradiationinducedtranscriptionalchangesinligninandflavonoidbiosynthesisandindoletryptophanauxinresponsivegenesinriceseedlings
AT kimmesun uvbirradiationinducedtranscriptionalchangesinligninandflavonoidbiosynthesisandindoletryptophanauxinresponsivegenesinriceseedlings
AT sungjwakyung uvbirradiationinducedtranscriptionalchangesinligninandflavonoidbiosynthesisandindoletryptophanauxinresponsivegenesinriceseedlings