Cargando…
Evaluation of Electrospun PCL-PLGA for Sustained Delivery of Kartogenin
In this study, kartogenin was incorporated into an electrospun blend of polycaprolactone and poly(lactic-co-glycolic acid) (1:1) to determine the feasibility of this system for sustained drug delivery. Kartogenin is a small-molecule drug that could enhance the outcome of microfracture, a cartilage r...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229984/ https://www.ncbi.nlm.nih.gov/pubmed/35744864 http://dx.doi.org/10.3390/molecules27123739 |
_version_ | 1784734919496302592 |
---|---|
author | Elder, Steven Roberson, John Graham Warren, James Lawson, Robert Young, Daniel Stokes, Sean Ross, Matthew K. |
author_facet | Elder, Steven Roberson, John Graham Warren, James Lawson, Robert Young, Daniel Stokes, Sean Ross, Matthew K. |
author_sort | Elder, Steven |
collection | PubMed |
description | In this study, kartogenin was incorporated into an electrospun blend of polycaprolactone and poly(lactic-co-glycolic acid) (1:1) to determine the feasibility of this system for sustained drug delivery. Kartogenin is a small-molecule drug that could enhance the outcome of microfracture, a cartilage restoration procedure, by selectively stimulating chondrogenic differentiation of endogenous bone marrow mesenchymal stem cells. Experimental results showed that kartogenin did not affect the electrospinnability of the polymer blend, and it had negligible effects on fiber morphology and scaffold mechanical properties. The loading efficiency of kartogenin into electrospun membranes was nearly 100%, and no evidence of chemical reaction between kartogenin and the polymers was detected by Fourier transform infrared spectroscopy. Analysis of the released drug using high-performance liquid chromatography–photodiode array detection indicated an abundance of kartogenin and only a small amount of its major hydrolysis product. Kartogenin displayed a typical biphasic release profile, with approximately 30% being released within 24 h followed by a much slower, constant rate of release up to 28 days. Although additional development is needed to tune the release kinetics and address issues common to electrospun scaffolds (e.g., high fiber density), the results of this study demonstrated that a scaffold electrospun from biodegradable synthetic polymers is a suitable kartogenin delivery vehicle. |
format | Online Article Text |
id | pubmed-9229984 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92299842022-06-25 Evaluation of Electrospun PCL-PLGA for Sustained Delivery of Kartogenin Elder, Steven Roberson, John Graham Warren, James Lawson, Robert Young, Daniel Stokes, Sean Ross, Matthew K. Molecules Article In this study, kartogenin was incorporated into an electrospun blend of polycaprolactone and poly(lactic-co-glycolic acid) (1:1) to determine the feasibility of this system for sustained drug delivery. Kartogenin is a small-molecule drug that could enhance the outcome of microfracture, a cartilage restoration procedure, by selectively stimulating chondrogenic differentiation of endogenous bone marrow mesenchymal stem cells. Experimental results showed that kartogenin did not affect the electrospinnability of the polymer blend, and it had negligible effects on fiber morphology and scaffold mechanical properties. The loading efficiency of kartogenin into electrospun membranes was nearly 100%, and no evidence of chemical reaction between kartogenin and the polymers was detected by Fourier transform infrared spectroscopy. Analysis of the released drug using high-performance liquid chromatography–photodiode array detection indicated an abundance of kartogenin and only a small amount of its major hydrolysis product. Kartogenin displayed a typical biphasic release profile, with approximately 30% being released within 24 h followed by a much slower, constant rate of release up to 28 days. Although additional development is needed to tune the release kinetics and address issues common to electrospun scaffolds (e.g., high fiber density), the results of this study demonstrated that a scaffold electrospun from biodegradable synthetic polymers is a suitable kartogenin delivery vehicle. MDPI 2022-06-10 /pmc/articles/PMC9229984/ /pubmed/35744864 http://dx.doi.org/10.3390/molecules27123739 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Elder, Steven Roberson, John Graham Warren, James Lawson, Robert Young, Daniel Stokes, Sean Ross, Matthew K. Evaluation of Electrospun PCL-PLGA for Sustained Delivery of Kartogenin |
title | Evaluation of Electrospun PCL-PLGA for Sustained Delivery of Kartogenin |
title_full | Evaluation of Electrospun PCL-PLGA for Sustained Delivery of Kartogenin |
title_fullStr | Evaluation of Electrospun PCL-PLGA for Sustained Delivery of Kartogenin |
title_full_unstemmed | Evaluation of Electrospun PCL-PLGA for Sustained Delivery of Kartogenin |
title_short | Evaluation of Electrospun PCL-PLGA for Sustained Delivery of Kartogenin |
title_sort | evaluation of electrospun pcl-plga for sustained delivery of kartogenin |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229984/ https://www.ncbi.nlm.nih.gov/pubmed/35744864 http://dx.doi.org/10.3390/molecules27123739 |
work_keys_str_mv | AT eldersteven evaluationofelectrospunpclplgaforsustaineddeliveryofkartogenin AT robersonjohngraham evaluationofelectrospunpclplgaforsustaineddeliveryofkartogenin AT warrenjames evaluationofelectrospunpclplgaforsustaineddeliveryofkartogenin AT lawsonrobert evaluationofelectrospunpclplgaforsustaineddeliveryofkartogenin AT youngdaniel evaluationofelectrospunpclplgaforsustaineddeliveryofkartogenin AT stokessean evaluationofelectrospunpclplgaforsustaineddeliveryofkartogenin AT rossmatthewk evaluationofelectrospunpclplgaforsustaineddeliveryofkartogenin |