Cargando…
Evaluating Plant Gene Models Using Machine Learning
Gene models are regions of the genome that can be transcribed into RNA and translated to proteins, or belong to a class of non-coding RNA genes. The prediction of gene models is a complex process that can be unreliable, leading to false positive annotations. To help support the calling of confident...
Autores principales: | Upadhyaya, Shriprabha R., Bayer, Philipp E., Tay Fernandez, Cassandria G., Petereit, Jakob, Batley, Jacqueline, Bennamoun, Mohammed, Boussaid, Farid, Edwards, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9230120/ https://www.ncbi.nlm.nih.gov/pubmed/35736770 http://dx.doi.org/10.3390/plants11121619 |
Ejemplares similares
-
DNABERT-based explainable lncRNA identification in plant genome assemblies
por: Danilevicz, Monica F., et al.
Publicado: (2023) -
Machine learning models outperform deep learning models, provide interpretation and facilitate feature selection for soybean trait prediction
por: Gill, Mitchell, et al.
Publicado: (2022) -
Plant Genotype to Phenotype Prediction Using Machine Learning
por: Danilevicz, Monica F., et al.
Publicado: (2022) -
Pangenomics and Crop Genome Adaptation in a Changing Climate
por: Petereit, Jakob, et al.
Publicado: (2022) -
Expanding Gene-Editing Potential in Crop Improvement with Pangenomes
por: Tay Fernandez, Cassandria G., et al.
Publicado: (2022)