Cargando…
Prediction of chaotic time series using recurrent neural networks and reservoir computing techniques: A comparative study
In recent years, machine-learning techniques, particularly deep learning, have outperformed traditional time-series forecasting approaches in many contexts, including univariate and multivariate predictions. This study aims to investigate the capability of (i) gated recurrent neural networks, includ...
Autores principales: | Shahi, Shahrokh, Fenton, Flavio H., Cherry, Elizabeth M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9230140/ https://www.ncbi.nlm.nih.gov/pubmed/35755176 http://dx.doi.org/10.1016/j.mlwa.2022.100300 |
Ejemplares similares
-
Long-Time Prediction of Arrhythmic Cardiac Action Potentials Using Recurrent Neural Networks and Reservoir Computing
por: Shahi, Shahrokh, et al.
Publicado: (2021) -
Optimizing quantum noise-induced reservoir computing for nonlinear and chaotic time series prediction
por: Fry, Daniel, et al.
Publicado: (2023) -
Discriminating chaotic and stochastic time series using permutation entropy and artificial neural networks
por: Boaretto, B. R. R., et al.
Publicado: (2021) -
Generative adversarial network based on chaotic time series
por: Naruse, Makoto, et al.
Publicado: (2019) -
Generalized relational tensors for chaotic time series
por: A. Gromov, Vasilii, et al.
Publicado: (2023)