Cargando…

Taxonomic Re-Evaluation and Genomic Comparison of Novel Extracellular Electron Uptake-Capable Rhodovulum visakhapatnamense and Rhodovulum sulfidophilum Isolates

Rhodovulum spp. are anoxygenic phototrophic purple bacteria with versatile metabolisms, including the ability to obtain electrons from minerals in their environment to drive photosynthesis, a relatively novel process called phototrophic extracellular electron uptake (pEEU). A total of 15 strains of...

Descripción completa

Detalles Bibliográficos
Autores principales: Davenport, Emily J., Bose, Arpita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9230146/
https://www.ncbi.nlm.nih.gov/pubmed/35744753
http://dx.doi.org/10.3390/microorganisms10061235
_version_ 1784734989605142528
author Davenport, Emily J.
Bose, Arpita
author_facet Davenport, Emily J.
Bose, Arpita
author_sort Davenport, Emily J.
collection PubMed
description Rhodovulum spp. are anoxygenic phototrophic purple bacteria with versatile metabolisms, including the ability to obtain electrons from minerals in their environment to drive photosynthesis, a relatively novel process called phototrophic extracellular electron uptake (pEEU). A total of 15 strains of Rhodovulum sulfidophilum were isolated from a marine estuary to observe these metabolisms in marine phototrophs. One representative strain, Rhodovulum sulfidophilum strain AB26, can perform phototrophic iron oxidation (photoferrotrophy) and couples carbon dioxide fixation to pEEU. Here, we reclassify two R. sulfidophilum isolates, strainAB26 and strain AB19, as Rhodovulum visakhapatnamense using taxonomic re-evaluation based on 16S and pufM phylogenetic analyses. The strain AB26 genome consists of 4,380,746 base-pairs, including two plasmids, and encodes 4296 predicted protein-coding genes. Strain AB26 contains 22 histidine kinases, 20 response regulators, and dedicates ~16% of its genome to transport. Transcriptomic data under aerobic, photoheterotrophy, photoautotrophy, and pEEU reveals how gene expression varies between metabolisms in a novel R. visakhapatnamense strain. Genome comparison led by transcriptomic data under pEEU reveals potential pEEU-relevant genes both unique to R. visakhapatnamense strains and shared within the R. sulfidophilum genomes. With these data we identify potential pEEU-important transcripts and how speciation may affect molecular mechanisms of pEEU in Rhodovulum species from the same environment.
format Online
Article
Text
id pubmed-9230146
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-92301462022-06-25 Taxonomic Re-Evaluation and Genomic Comparison of Novel Extracellular Electron Uptake-Capable Rhodovulum visakhapatnamense and Rhodovulum sulfidophilum Isolates Davenport, Emily J. Bose, Arpita Microorganisms Article Rhodovulum spp. are anoxygenic phototrophic purple bacteria with versatile metabolisms, including the ability to obtain electrons from minerals in their environment to drive photosynthesis, a relatively novel process called phototrophic extracellular electron uptake (pEEU). A total of 15 strains of Rhodovulum sulfidophilum were isolated from a marine estuary to observe these metabolisms in marine phototrophs. One representative strain, Rhodovulum sulfidophilum strain AB26, can perform phototrophic iron oxidation (photoferrotrophy) and couples carbon dioxide fixation to pEEU. Here, we reclassify two R. sulfidophilum isolates, strainAB26 and strain AB19, as Rhodovulum visakhapatnamense using taxonomic re-evaluation based on 16S and pufM phylogenetic analyses. The strain AB26 genome consists of 4,380,746 base-pairs, including two plasmids, and encodes 4296 predicted protein-coding genes. Strain AB26 contains 22 histidine kinases, 20 response regulators, and dedicates ~16% of its genome to transport. Transcriptomic data under aerobic, photoheterotrophy, photoautotrophy, and pEEU reveals how gene expression varies between metabolisms in a novel R. visakhapatnamense strain. Genome comparison led by transcriptomic data under pEEU reveals potential pEEU-relevant genes both unique to R. visakhapatnamense strains and shared within the R. sulfidophilum genomes. With these data we identify potential pEEU-important transcripts and how speciation may affect molecular mechanisms of pEEU in Rhodovulum species from the same environment. MDPI 2022-06-16 /pmc/articles/PMC9230146/ /pubmed/35744753 http://dx.doi.org/10.3390/microorganisms10061235 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Davenport, Emily J.
Bose, Arpita
Taxonomic Re-Evaluation and Genomic Comparison of Novel Extracellular Electron Uptake-Capable Rhodovulum visakhapatnamense and Rhodovulum sulfidophilum Isolates
title Taxonomic Re-Evaluation and Genomic Comparison of Novel Extracellular Electron Uptake-Capable Rhodovulum visakhapatnamense and Rhodovulum sulfidophilum Isolates
title_full Taxonomic Re-Evaluation and Genomic Comparison of Novel Extracellular Electron Uptake-Capable Rhodovulum visakhapatnamense and Rhodovulum sulfidophilum Isolates
title_fullStr Taxonomic Re-Evaluation and Genomic Comparison of Novel Extracellular Electron Uptake-Capable Rhodovulum visakhapatnamense and Rhodovulum sulfidophilum Isolates
title_full_unstemmed Taxonomic Re-Evaluation and Genomic Comparison of Novel Extracellular Electron Uptake-Capable Rhodovulum visakhapatnamense and Rhodovulum sulfidophilum Isolates
title_short Taxonomic Re-Evaluation and Genomic Comparison of Novel Extracellular Electron Uptake-Capable Rhodovulum visakhapatnamense and Rhodovulum sulfidophilum Isolates
title_sort taxonomic re-evaluation and genomic comparison of novel extracellular electron uptake-capable rhodovulum visakhapatnamense and rhodovulum sulfidophilum isolates
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9230146/
https://www.ncbi.nlm.nih.gov/pubmed/35744753
http://dx.doi.org/10.3390/microorganisms10061235
work_keys_str_mv AT davenportemilyj taxonomicreevaluationandgenomiccomparisonofnovelextracellularelectronuptakecapablerhodovulumvisakhapatnamenseandrhodovulumsulfidophilumisolates
AT bosearpita taxonomicreevaluationandgenomiccomparisonofnovelextracellularelectronuptakecapablerhodovulumvisakhapatnamenseandrhodovulumsulfidophilumisolates