Cargando…
A Machine Learning Model for Food Source Attribution of Listeria monocytogenes
Despite its low morbidity, listeriosis has a high mortality rate due to the severity of its clinical manifestations. The source of human listeriosis is often unclear. In this study, we investigate the ability of machine learning to predict the food source from which clinical Listeria monocytogenes i...
Autores principales: | Tanui, Collins K., Benefo, Edmund O., Karanth, Shraddha, Pradhan, Abani K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9230378/ https://www.ncbi.nlm.nih.gov/pubmed/35745545 http://dx.doi.org/10.3390/pathogens11060691 |
Ejemplares similares
-
Machine learning to predict foodborne salmonellosis outbreaks based on genome characteristics and meteorological trends
por: Karanth, Shraddha, et al.
Publicado: (2023) -
Linking microbial contamination to food spoilage and food waste: the role of smart packaging, spoilage risk assessments, and date labeling
por: Karanth, Shraddha, et al.
Publicado: (2023) -
Harmonization of supervised machine learning practices for efficient source attribution of Listeria monocytogenes based on genomic data
por: Castelli, Pierluigi, et al.
Publicado: (2023) -
Listeria monocytogenes Biofilms in the Wonderland of Food Industry
por: Colagiorgi, Angelo, et al.
Publicado: (2017) -
Prediction of population behavior of Listeria monocytogenes in food using machine learning and a microbial growth and survival database
por: Hiura, Satoko, et al.
Publicado: (2021)