Cargando…
Implementing Silica Nanoparticles in the Study of the Airborne Transmission of SARS-CoV-2
Aerosol transmission constitutes one of the major transmission routes of the SARS-CoV-2 pathogen. Due to the pathogen’s properties, research on its airborne transmission has some limitations. This paper focuses on silica nanoparticles (SiO(2)) of 40 and 200 nm sizes as the physicochemical markers of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9230593/ https://www.ncbi.nlm.nih.gov/pubmed/35745019 http://dx.doi.org/10.3390/molecules27123896 |
_version_ | 1784735101227106304 |
---|---|
author | Hildebrandt, Robert Skubacz, Krystian Chmielewska, Izabela Dyduch, Zdzisław Zgórska, Aleksandra Smoliński, Adam |
author_facet | Hildebrandt, Robert Skubacz, Krystian Chmielewska, Izabela Dyduch, Zdzisław Zgórska, Aleksandra Smoliński, Adam |
author_sort | Hildebrandt, Robert |
collection | PubMed |
description | Aerosol transmission constitutes one of the major transmission routes of the SARS-CoV-2 pathogen. Due to the pathogen’s properties, research on its airborne transmission has some limitations. This paper focuses on silica nanoparticles (SiO(2)) of 40 and 200 nm sizes as the physicochemical markers of a single SARS-CoV-2 particle enabling experiments on the transmission of bioaerosols in public spaces. Mixtures of a determined silica concentration were sprayed on as an aerosol, whose particles, sedimented on dedicated matrices, were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Since it was not possible to quantitatively identify the markers based on the obtained images, the filters exposed with the AirSampler aspirator were analyzed based on inductively coupled plasma optical emission spectroscopy (ICP-OES). The ICP-OES method enabled us to determine the concentration of silica after extracting the marker from the filter, and consequently to estimate the number of markers. The developed procedure opens up the possibility of the quantitative estimation of the spread of the coronavirus, for example in studies on the aerosol transmission of the pathogen in an open environment where biological markers—surrogates included—cannot be used. |
format | Online Article Text |
id | pubmed-9230593 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92305932022-06-25 Implementing Silica Nanoparticles in the Study of the Airborne Transmission of SARS-CoV-2 Hildebrandt, Robert Skubacz, Krystian Chmielewska, Izabela Dyduch, Zdzisław Zgórska, Aleksandra Smoliński, Adam Molecules Article Aerosol transmission constitutes one of the major transmission routes of the SARS-CoV-2 pathogen. Due to the pathogen’s properties, research on its airborne transmission has some limitations. This paper focuses on silica nanoparticles (SiO(2)) of 40 and 200 nm sizes as the physicochemical markers of a single SARS-CoV-2 particle enabling experiments on the transmission of bioaerosols in public spaces. Mixtures of a determined silica concentration were sprayed on as an aerosol, whose particles, sedimented on dedicated matrices, were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Since it was not possible to quantitatively identify the markers based on the obtained images, the filters exposed with the AirSampler aspirator were analyzed based on inductively coupled plasma optical emission spectroscopy (ICP-OES). The ICP-OES method enabled us to determine the concentration of silica after extracting the marker from the filter, and consequently to estimate the number of markers. The developed procedure opens up the possibility of the quantitative estimation of the spread of the coronavirus, for example in studies on the aerosol transmission of the pathogen in an open environment where biological markers—surrogates included—cannot be used. MDPI 2022-06-17 /pmc/articles/PMC9230593/ /pubmed/35745019 http://dx.doi.org/10.3390/molecules27123896 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hildebrandt, Robert Skubacz, Krystian Chmielewska, Izabela Dyduch, Zdzisław Zgórska, Aleksandra Smoliński, Adam Implementing Silica Nanoparticles in the Study of the Airborne Transmission of SARS-CoV-2 |
title | Implementing Silica Nanoparticles in the Study of the Airborne Transmission of SARS-CoV-2 |
title_full | Implementing Silica Nanoparticles in the Study of the Airborne Transmission of SARS-CoV-2 |
title_fullStr | Implementing Silica Nanoparticles in the Study of the Airborne Transmission of SARS-CoV-2 |
title_full_unstemmed | Implementing Silica Nanoparticles in the Study of the Airborne Transmission of SARS-CoV-2 |
title_short | Implementing Silica Nanoparticles in the Study of the Airborne Transmission of SARS-CoV-2 |
title_sort | implementing silica nanoparticles in the study of the airborne transmission of sars-cov-2 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9230593/ https://www.ncbi.nlm.nih.gov/pubmed/35745019 http://dx.doi.org/10.3390/molecules27123896 |
work_keys_str_mv | AT hildebrandtrobert implementingsilicananoparticlesinthestudyoftheairbornetransmissionofsarscov2 AT skubaczkrystian implementingsilicananoparticlesinthestudyoftheairbornetransmissionofsarscov2 AT chmielewskaizabela implementingsilicananoparticlesinthestudyoftheairbornetransmissionofsarscov2 AT dyduchzdzisław implementingsilicananoparticlesinthestudyoftheairbornetransmissionofsarscov2 AT zgorskaaleksandra implementingsilicananoparticlesinthestudyoftheairbornetransmissionofsarscov2 AT smolinskiadam implementingsilicananoparticlesinthestudyoftheairbornetransmissionofsarscov2 |