Cargando…
Machine Learning Approaches for Monitoring of Tool Wear during Grey Cast-Iron Turning
The dynamic development of new technologies enables the optimal computer technique choice to improve the required quality in today’s manufacturing industries. One of the methods of improving the determining process is machine learning. This paper compares different intelligent system methods to iden...
Autores principales: | Tabaszewski, Maciej, Twardowski, Paweł, Wiciak-Pikuła, Martyna, Znojkiewicz, Natalia, Felusiak-Czyryca, Agata, Czyżycki, Jakub |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9230642/ https://www.ncbi.nlm.nih.gov/pubmed/35744419 http://dx.doi.org/10.3390/ma15124359 |
Ejemplares similares
-
Tool Wear Prediction Based on Artificial Neural Network during Aluminum Matrix Composite Milling (†)
por: Wiciak-Pikuła, Martyna, et al.
Publicado: (2020) -
Cutting Forces during Inconel 718 Orthogonal Turn-Milling
por: Felusiak-Czyryca, Agata, et al.
Publicado: (2021) -
Experimental Investigation of Surface Roughness in Milling of Duralcan(TM) Composite
por: Wiciak-Pikuła, Martyna, et al.
Publicado: (2021) -
Prediction of Tool Wear Using Artificial Neural Networks during Turning of Hardened Steel
por: Twardowski, Paweł, et al.
Publicado: (2019) -
Analysis of the Displacement of Thin-Walled Workpiece Using a High-Speed Camera during Peripheral Milling of Aluminum Alloys
por: Czyżycki, Jakub, et al.
Publicado: (2021)