Cargando…

The Inhibition of Microcystin Adsorption by Microplastics in the Presence of Algal Organic Matters

Microplastics (MPs) could act as vectors of synthetic chemicals; however, their influence on the adsorption of chemicals of natural origin (for example, MC-LR and intracellular organic matter (IOM), which could be concomitantly released by toxic Microcystis in water) is less understood. Here, we exp...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Bingran, Tang, Ying, Zhou, Xin, Liu, Mengzi, Li, Hong, Qi, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9230722/
https://www.ncbi.nlm.nih.gov/pubmed/35736947
http://dx.doi.org/10.3390/toxics10060339
Descripción
Sumario:Microplastics (MPs) could act as vectors of synthetic chemicals; however, their influence on the adsorption of chemicals of natural origin (for example, MC-LR and intracellular organic matter (IOM), which could be concomitantly released by toxic Microcystis in water) is less understood. Here, we explored the adsorption of MC-LR by polyethylene (PE), polystyrene (PS), and polymethyl methacrylate (PMMA). The results showed that the MPs could adsorb both MC-LR and IOM, with the adsorption capability uniformly following the order of PS, PE, and PMMA. However, in the presence of IOM, the adsorption of MC-LR by PE, PS, and PMMA was reduced by 22.3%, 22.7% and 5.4%, respectively. This is because the benzene structure and the specific surface area of PS facilitate the adsorption of MC-LR and IOM, while the formation of Π-Π bonds favor its interaction with IOM. Consequently, the competition for binding sites between MC-LR and IOM hindered MC-LR adsorption. The C=O in PMMA benefits its conjunction with hydroxyl and carboxyl in the IOM through hydrogen bonding; thus, the adsorption of MC-LR is also inhibited. These findings highlight that the adsorption of chemicals of natural origin by MPs is likely overestimated in the presence of metabolites from the same biota.