Cargando…
Multi-Agent Decision-Making Modes in Uncertain Interactive Traffic Scenarios via Graph Convolution-Based Deep Reinforcement Learning
As one of the main elements of reinforcement learning, the design of the reward function is often not given enough attention when reinforcement learning is used in concrete applications, which leads to unsatisfactory performances. In this study, a reward function matrix is proposed for training vari...
Autores principales: | Gao, Xin, Li, Xueyuan, Liu, Qi, Li, Zirui, Yang, Fan, Luan, Tian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9230819/ https://www.ncbi.nlm.nih.gov/pubmed/35746364 http://dx.doi.org/10.3390/s22124586 |
Ejemplares similares
-
Generalized Single-Vehicle-Based Graph Reinforcement Learning for Decision-Making in Autonomous Driving
por: Yang, Fan, et al.
Publicado: (2022) -
Graph Reinforcement Learning-Based Decision-Making Technology for Connected and Autonomous Vehicles: Framework, Review, and Future Trends
por: Liu, Qi, et al.
Publicado: (2023) -
SGGformer: Shifted Graph Convolutional Graph-Transformer for Traffic Prediction
por: Pu, Shilin, et al.
Publicado: (2022) -
Autoimmune diseases and vaccines against COVID-19. Decision making in uncertain scenarios()
por: Cairoli, Ernesto, et al.
Publicado: (2021) -
Autoimmune diseases and vaccines against COVID-19. Decision-making in uncertain scenarios()
por: Calvo Elías, Alberto E., et al.
Publicado: (2022)