Cargando…
A Reconfigurable Surface-Plasmon-Based Filter/Sensor Using D-Shaped Photonic Crystal Fiber
A reconfigurable surface-plasmon-based filter/sensor using D-shaped photonic crystal fiber is proposed. Initially a D-shaped PCF is designed and optimized to realize the highly birefringence and by ensuring the single polarization filter. A tiny layer of silver is placed on the flat surface of the D...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9230845/ https://www.ncbi.nlm.nih.gov/pubmed/35744531 http://dx.doi.org/10.3390/mi13060917 |
_version_ | 1784735170036760576 |
---|---|
author | Selvendran, S. Divya, J. Sivanantha Raja, A. Sivasubramanian, A. Itapu, Srikanth |
author_facet | Selvendran, S. Divya, J. Sivanantha Raja, A. Sivasubramanian, A. Itapu, Srikanth |
author_sort | Selvendran, S. |
collection | PubMed |
description | A reconfigurable surface-plasmon-based filter/sensor using D-shaped photonic crystal fiber is proposed. Initially a D-shaped PCF is designed and optimized to realize the highly birefringence and by ensuring the single polarization filter. A tiny layer of silver is placed on the flat surface of the D-shaped fiber with a small half-circular opening to activate the plasmon modes. By the surface plasmon effect a maximum confinement loss of about 713 dB/cm is realized at the operating wavelength of 1.98 µm in X-polarized mode. At this wavelength the proposed fiber only allows Y-polarization and filters the X-polarization using surface plasmon resonance. It is also exhibiting maximum confinement loss of about 426 dB/cm at wavelength 1.92 µm wavelength for Y-polarization. At this 1.92 µm wavelength the proposed structure attenuated the Y-polarization completely and allowed X-polarization alone. The proposed PCF polarization filter can be extended as a sensor by adding an analyte outside this filter structure. The proposed sensor can detect even a small refractive index (RI) variation of analytes ranging from 1.34–1.37. This sensor provides the maximum sensitivity of about 5000 nm/RIU; it enables this sensor to be ideally suited for various biosensing and industrial applications. |
format | Online Article Text |
id | pubmed-9230845 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92308452022-06-25 A Reconfigurable Surface-Plasmon-Based Filter/Sensor Using D-Shaped Photonic Crystal Fiber Selvendran, S. Divya, J. Sivanantha Raja, A. Sivasubramanian, A. Itapu, Srikanth Micromachines (Basel) Article A reconfigurable surface-plasmon-based filter/sensor using D-shaped photonic crystal fiber is proposed. Initially a D-shaped PCF is designed and optimized to realize the highly birefringence and by ensuring the single polarization filter. A tiny layer of silver is placed on the flat surface of the D-shaped fiber with a small half-circular opening to activate the plasmon modes. By the surface plasmon effect a maximum confinement loss of about 713 dB/cm is realized at the operating wavelength of 1.98 µm in X-polarized mode. At this wavelength the proposed fiber only allows Y-polarization and filters the X-polarization using surface plasmon resonance. It is also exhibiting maximum confinement loss of about 426 dB/cm at wavelength 1.92 µm wavelength for Y-polarization. At this 1.92 µm wavelength the proposed structure attenuated the Y-polarization completely and allowed X-polarization alone. The proposed PCF polarization filter can be extended as a sensor by adding an analyte outside this filter structure. The proposed sensor can detect even a small refractive index (RI) variation of analytes ranging from 1.34–1.37. This sensor provides the maximum sensitivity of about 5000 nm/RIU; it enables this sensor to be ideally suited for various biosensing and industrial applications. MDPI 2022-06-09 /pmc/articles/PMC9230845/ /pubmed/35744531 http://dx.doi.org/10.3390/mi13060917 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Selvendran, S. Divya, J. Sivanantha Raja, A. Sivasubramanian, A. Itapu, Srikanth A Reconfigurable Surface-Plasmon-Based Filter/Sensor Using D-Shaped Photonic Crystal Fiber |
title | A Reconfigurable Surface-Plasmon-Based Filter/Sensor Using D-Shaped Photonic Crystal Fiber |
title_full | A Reconfigurable Surface-Plasmon-Based Filter/Sensor Using D-Shaped Photonic Crystal Fiber |
title_fullStr | A Reconfigurable Surface-Plasmon-Based Filter/Sensor Using D-Shaped Photonic Crystal Fiber |
title_full_unstemmed | A Reconfigurable Surface-Plasmon-Based Filter/Sensor Using D-Shaped Photonic Crystal Fiber |
title_short | A Reconfigurable Surface-Plasmon-Based Filter/Sensor Using D-Shaped Photonic Crystal Fiber |
title_sort | reconfigurable surface-plasmon-based filter/sensor using d-shaped photonic crystal fiber |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9230845/ https://www.ncbi.nlm.nih.gov/pubmed/35744531 http://dx.doi.org/10.3390/mi13060917 |
work_keys_str_mv | AT selvendrans areconfigurablesurfaceplasmonbasedfiltersensorusingdshapedphotoniccrystalfiber AT divyaj areconfigurablesurfaceplasmonbasedfiltersensorusingdshapedphotoniccrystalfiber AT sivanantharajaa areconfigurablesurfaceplasmonbasedfiltersensorusingdshapedphotoniccrystalfiber AT sivasubramaniana areconfigurablesurfaceplasmonbasedfiltersensorusingdshapedphotoniccrystalfiber AT itapusrikanth areconfigurablesurfaceplasmonbasedfiltersensorusingdshapedphotoniccrystalfiber AT selvendrans reconfigurablesurfaceplasmonbasedfiltersensorusingdshapedphotoniccrystalfiber AT divyaj reconfigurablesurfaceplasmonbasedfiltersensorusingdshapedphotoniccrystalfiber AT sivanantharajaa reconfigurablesurfaceplasmonbasedfiltersensorusingdshapedphotoniccrystalfiber AT sivasubramaniana reconfigurablesurfaceplasmonbasedfiltersensorusingdshapedphotoniccrystalfiber AT itapusrikanth reconfigurablesurfaceplasmonbasedfiltersensorusingdshapedphotoniccrystalfiber |