Cargando…
Adaptive Aggregate Stereo Matching Network with Depth Map Super-Resolution
In order to avoid the direct depth reconstruction of the original image pair and improve the accuracy of the results, we proposed a coarse-to-fine stereo matching network combining multi-level residual optimization and depth map super-resolution (ASR-Net). First, we used the u-net feature extractor...
Autores principales: | Liu, Botao, Chen, Kai, Peng, Sheng-Lung, Zhao, Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9230940/ https://www.ncbi.nlm.nih.gov/pubmed/35746339 http://dx.doi.org/10.3390/s22124548 |
Ejemplares similares
-
Reliable Fusion of Stereo Matching and Depth Sensor for High Quality Dense Depth Maps
por: Liu, Jing, et al.
Publicado: (2015) -
Dual Guided Aggregation Network for Stereo Image Matching
por: Wang, Ruei-Ping, et al.
Publicado: (2022) -
Depth Estimation for Light-Field Images Using Stereo Matching and Convolutional Neural Networks
por: Rogge, Ségolène, et al.
Publicado: (2020) -
Multiscale Attention Fusion for Depth Map Super-Resolution Generative Adversarial Networks
por: Xu, Dan, et al.
Publicado: (2023) -
Depth Map Estimation with Consistent Normals from Stereo Images
por: Malyshev, Alexander
Publicado: (2020)