Cargando…
Multicomponent Aging Al-Li-Based Alloys of the Latest Generation: Structural and Phase Transformations, Treatments, Properties, and Future Prospects
An overview of modern material science problems is presented for ultralightweight high-modulus commercial Al-Li-based alloys in historical retrospect. Numerous particular examples of the Soviet and Russian aviation whose various designs were made of these alloys confirm their successful innovative p...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231015/ https://www.ncbi.nlm.nih.gov/pubmed/35744252 http://dx.doi.org/10.3390/ma15124190 |
_version_ | 1784735224156913664 |
---|---|
author | Rasposienko, Dmitriy Y. Kaigorodova, Larisa I. Pushin, Vladimir G. Ustugov, Yurii M. |
author_facet | Rasposienko, Dmitriy Y. Kaigorodova, Larisa I. Pushin, Vladimir G. Ustugov, Yurii M. |
author_sort | Rasposienko, Dmitriy Y. |
collection | PubMed |
description | An overview of modern material science problems is presented for ultralightweight high-modulus commercial Al-Li-based alloys in historical retrospect. Numerous particular examples of the Soviet and Russian aviation whose various designs were made of these alloys confirm their successful innovative potential. The key regularities of multicomponent alloying are discussed for the master alloys and modern commercial Al-Li-based alloys of the latest generation; the features typical of their microstructures, phase composition, and properties formed during aging are analyzed. The main mechanisms of phase formation are generalized for standard thermal and thermomechanical treatments. Recent original achievements have been obtained in designing of unique structural and phase transformations in these commercial alloys by means of methods of severe plastic deformations followed by heat treatment and storage. Using the example of three Russian commercial alloys of last generation, the basic principles of creating and controlling an ultrafine-grained structure, the origin and growth of stable nanophases of various types and chemical composition that determine the physicomechanical properties of alloys are established. |
format | Online Article Text |
id | pubmed-9231015 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92310152022-06-25 Multicomponent Aging Al-Li-Based Alloys of the Latest Generation: Structural and Phase Transformations, Treatments, Properties, and Future Prospects Rasposienko, Dmitriy Y. Kaigorodova, Larisa I. Pushin, Vladimir G. Ustugov, Yurii M. Materials (Basel) Article An overview of modern material science problems is presented for ultralightweight high-modulus commercial Al-Li-based alloys in historical retrospect. Numerous particular examples of the Soviet and Russian aviation whose various designs were made of these alloys confirm their successful innovative potential. The key regularities of multicomponent alloying are discussed for the master alloys and modern commercial Al-Li-based alloys of the latest generation; the features typical of their microstructures, phase composition, and properties formed during aging are analyzed. The main mechanisms of phase formation are generalized for standard thermal and thermomechanical treatments. Recent original achievements have been obtained in designing of unique structural and phase transformations in these commercial alloys by means of methods of severe plastic deformations followed by heat treatment and storage. Using the example of three Russian commercial alloys of last generation, the basic principles of creating and controlling an ultrafine-grained structure, the origin and growth of stable nanophases of various types and chemical composition that determine the physicomechanical properties of alloys are established. MDPI 2022-06-13 /pmc/articles/PMC9231015/ /pubmed/35744252 http://dx.doi.org/10.3390/ma15124190 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rasposienko, Dmitriy Y. Kaigorodova, Larisa I. Pushin, Vladimir G. Ustugov, Yurii M. Multicomponent Aging Al-Li-Based Alloys of the Latest Generation: Structural and Phase Transformations, Treatments, Properties, and Future Prospects |
title | Multicomponent Aging Al-Li-Based Alloys of the Latest Generation: Structural and Phase Transformations, Treatments, Properties, and Future Prospects |
title_full | Multicomponent Aging Al-Li-Based Alloys of the Latest Generation: Structural and Phase Transformations, Treatments, Properties, and Future Prospects |
title_fullStr | Multicomponent Aging Al-Li-Based Alloys of the Latest Generation: Structural and Phase Transformations, Treatments, Properties, and Future Prospects |
title_full_unstemmed | Multicomponent Aging Al-Li-Based Alloys of the Latest Generation: Structural and Phase Transformations, Treatments, Properties, and Future Prospects |
title_short | Multicomponent Aging Al-Li-Based Alloys of the Latest Generation: Structural and Phase Transformations, Treatments, Properties, and Future Prospects |
title_sort | multicomponent aging al-li-based alloys of the latest generation: structural and phase transformations, treatments, properties, and future prospects |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231015/ https://www.ncbi.nlm.nih.gov/pubmed/35744252 http://dx.doi.org/10.3390/ma15124190 |
work_keys_str_mv | AT rasposienkodmitriyy multicomponentagingallibasedalloysofthelatestgenerationstructuralandphasetransformationstreatmentspropertiesandfutureprospects AT kaigorodovalarisai multicomponentagingallibasedalloysofthelatestgenerationstructuralandphasetransformationstreatmentspropertiesandfutureprospects AT pushinvladimirg multicomponentagingallibasedalloysofthelatestgenerationstructuralandphasetransformationstreatmentspropertiesandfutureprospects AT ustugovyuriim multicomponentagingallibasedalloysofthelatestgenerationstructuralandphasetransformationstreatmentspropertiesandfutureprospects |