Cargando…
Effect of Voidage on the Collapsing Bed Dynamics of Fine Particles: A Detailed Region-Wise Study
Bed collapse experiments provide vital information about fluidized bed hydrodynamics. In this study, the region-wise bed collapse dynamics of glass beads, titania (TiO(2)), and hydrophilic nanosilica (SiO(2)) particles with widely different voidages (ε) of 0.38, 0.80, and 0.98, respectively, were ca...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231040/ https://www.ncbi.nlm.nih.gov/pubmed/35745358 http://dx.doi.org/10.3390/nano12122019 |
_version_ | 1784735231033475072 |
---|---|
author | Ali, Syed Sadiq Arsad, Agus Roberts, Kenneth L. Asif, Mohammad |
author_facet | Ali, Syed Sadiq Arsad, Agus Roberts, Kenneth L. Asif, Mohammad |
author_sort | Ali, Syed Sadiq |
collection | PubMed |
description | Bed collapse experiments provide vital information about fluidized bed hydrodynamics. In this study, the region-wise bed collapse dynamics of glass beads, titania (TiO(2)), and hydrophilic nanosilica (SiO(2)) particles with widely different voidages (ε) of 0.38, 0.80, and 0.98, respectively, were carefully investigated. These particles belonged to different Geldart groups and exhibited varied hysteresis phenomena and fluidization indices. The local collapse dynamics in the lower, lower-middle, upper-middle, and upper regions were carefully monitored in addition to the distributor pressure drop to obtain greater insight into the deaeration behavior of the bed. While the collapse dynamics of glass beads revealed high bed homogeneity, the upper middle region controlled the collapse process in the case of titania due to the size-based segregation along the bed height. The segregation behavior was very strong for nanosilica, with the slow settling fine agglomerates in the upper bed regions controlling its collapse dynamics. The collapse time of the upper region was 25 times slower than that of the lower region containing mainly large agglomerates. The spectral analysis confirmed the trend that was observed in the pressure transients. The clear presence of high frequency events at 20 and 40 Hz was observed in the nanosilica due to agglomerate movements. The residual air exiting the plenum was strongly affected by the bed voidage, being lowest for the nanosilica and highest for the glass beads. |
format | Online Article Text |
id | pubmed-9231040 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92310402022-06-25 Effect of Voidage on the Collapsing Bed Dynamics of Fine Particles: A Detailed Region-Wise Study Ali, Syed Sadiq Arsad, Agus Roberts, Kenneth L. Asif, Mohammad Nanomaterials (Basel) Article Bed collapse experiments provide vital information about fluidized bed hydrodynamics. In this study, the region-wise bed collapse dynamics of glass beads, titania (TiO(2)), and hydrophilic nanosilica (SiO(2)) particles with widely different voidages (ε) of 0.38, 0.80, and 0.98, respectively, were carefully investigated. These particles belonged to different Geldart groups and exhibited varied hysteresis phenomena and fluidization indices. The local collapse dynamics in the lower, lower-middle, upper-middle, and upper regions were carefully monitored in addition to the distributor pressure drop to obtain greater insight into the deaeration behavior of the bed. While the collapse dynamics of glass beads revealed high bed homogeneity, the upper middle region controlled the collapse process in the case of titania due to the size-based segregation along the bed height. The segregation behavior was very strong for nanosilica, with the slow settling fine agglomerates in the upper bed regions controlling its collapse dynamics. The collapse time of the upper region was 25 times slower than that of the lower region containing mainly large agglomerates. The spectral analysis confirmed the trend that was observed in the pressure transients. The clear presence of high frequency events at 20 and 40 Hz was observed in the nanosilica due to agglomerate movements. The residual air exiting the plenum was strongly affected by the bed voidage, being lowest for the nanosilica and highest for the glass beads. MDPI 2022-06-11 /pmc/articles/PMC9231040/ /pubmed/35745358 http://dx.doi.org/10.3390/nano12122019 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ali, Syed Sadiq Arsad, Agus Roberts, Kenneth L. Asif, Mohammad Effect of Voidage on the Collapsing Bed Dynamics of Fine Particles: A Detailed Region-Wise Study |
title | Effect of Voidage on the Collapsing Bed Dynamics of Fine Particles: A Detailed Region-Wise Study |
title_full | Effect of Voidage on the Collapsing Bed Dynamics of Fine Particles: A Detailed Region-Wise Study |
title_fullStr | Effect of Voidage on the Collapsing Bed Dynamics of Fine Particles: A Detailed Region-Wise Study |
title_full_unstemmed | Effect of Voidage on the Collapsing Bed Dynamics of Fine Particles: A Detailed Region-Wise Study |
title_short | Effect of Voidage on the Collapsing Bed Dynamics of Fine Particles: A Detailed Region-Wise Study |
title_sort | effect of voidage on the collapsing bed dynamics of fine particles: a detailed region-wise study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231040/ https://www.ncbi.nlm.nih.gov/pubmed/35745358 http://dx.doi.org/10.3390/nano12122019 |
work_keys_str_mv | AT alisyedsadiq effectofvoidageonthecollapsingbeddynamicsoffineparticlesadetailedregionwisestudy AT arsadagus effectofvoidageonthecollapsingbeddynamicsoffineparticlesadetailedregionwisestudy AT robertskennethl effectofvoidageonthecollapsingbeddynamicsoffineparticlesadetailedregionwisestudy AT asifmohammad effectofvoidageonthecollapsingbeddynamicsoffineparticlesadetailedregionwisestudy |