Cargando…

Recent Progress on Nanocrystalline Metallic Materials for Biomedical Applications

Nanocrystalline (NC) metallic materials have better mechanical properties, corrosion behavior and biocompatibility compared with their coarse-grained (CG) counterparts. Recently, nanocrystalline metallic materials are receiving increasing attention for biomedical applications. In this review, we hav...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Huafang, Wang, Pengyu, Wen, Cuie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231076/
https://www.ncbi.nlm.nih.gov/pubmed/35745450
http://dx.doi.org/10.3390/nano12122111
Descripción
Sumario:Nanocrystalline (NC) metallic materials have better mechanical properties, corrosion behavior and biocompatibility compared with their coarse-grained (CG) counterparts. Recently, nanocrystalline metallic materials are receiving increasing attention for biomedical applications. In this review, we have summarized the mechanical properties, corrosion behavior, biocompatibility, and clinical applications of different types of NC metallic materials. Nanocrystalline materials, such as Ti and Ti alloys, shape memory alloys (SMAs), stainless steels (SS), and biodegradable Fe and Mg alloys prepared by high-pressure torsion, equiangular extrusion techniques, etc., have better mechanical properties, superior corrosion resistance and biocompatibility properties due to their special nanostructures. Moreover, future research directions of NC metallic materials are elaborated. This review can provide guidance and reference for future research on nanocrystalline metallic materials for biomedical applications.