Cargando…
An Embedded Portable Lightweight Platform for Real-Time Early Smoke Detection
The advances in developing more accurate and fast smoke detection algorithms increase the need for computation in smoke detection, which demands the involvement of personal computers or workstations. Better detection results require a more complex network structure of the smoke detection algorithms...
Autores principales: | Liu, Bowen, Sun, Bingjian, Cheng, Pengle, Huang, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231185/ https://www.ncbi.nlm.nih.gov/pubmed/35746436 http://dx.doi.org/10.3390/s22124655 |
Ejemplares similares
-
Few-Shot Fine-Grained Forest Fire Smoke Recognition Based on Metric Learning
por: Sun, Bingjian, et al.
Publicado: (2022) -
A Lightweight Object Detection Network for Real-Time Detection of Driver Handheld Call on Embedded Devices
por: Zhao, Zuopeng, et al.
Publicado: (2020) -
Full-Scale Fire Smoke Root Detection Based on Connected Particles
por: Feng, Xuhong, et al.
Publicado: (2022) -
RHINOS: A lightweight portable electronic nose for real-time odor quantification in wastewater treatment plants
por: Burgués, Javier, et al.
Publicado: (2021) -
Real-Time Target Detection Method Based on Lightweight Convolutional Neural Network
por: Yun, Juntong, et al.
Publicado: (2022)