Cargando…

The Riemannian Geometry Theory of Visually-Guided Movement Accounts for Afterimage Illusions and Size Constancy

This discussion paper supplements our two theoretical contributions previously published in this journal on the geometric nature of visual space. We first show here how our Riemannian formulation explains the recent experimental finding (published in this special issue on size constancy) that, contr...

Descripción completa

Detalles Bibliográficos
Autores principales: Neilson, Peter D., Neilson, Megan D., Bye, Robin T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231332/
https://www.ncbi.nlm.nih.gov/pubmed/35737424
http://dx.doi.org/10.3390/vision6020037
_version_ 1784735311532654592
author Neilson, Peter D.
Neilson, Megan D.
Bye, Robin T.
author_facet Neilson, Peter D.
Neilson, Megan D.
Bye, Robin T.
author_sort Neilson, Peter D.
collection PubMed
description This discussion paper supplements our two theoretical contributions previously published in this journal on the geometric nature of visual space. We first show here how our Riemannian formulation explains the recent experimental finding (published in this special issue on size constancy) that, contrary to conclusions from past work, vergence does not affect perceived size. We then turn to afterimage experiments connected to that work. Beginning with the Taylor illusion, we explore how our proposed Riemannian visual–somatosensory–hippocampal association memory network accounts in the following way for perceptions that occur when afterimages are viewed in conjunction with body movement. The Riemannian metric incorporated in the association memory network accurately emulates the warping of 3D visual space that is intrinsically introduced by the eye. The network thus accurately anticipates the change in size of retinal images of objects with a change in Euclidean distance between the egocentre and the object. An object will only be perceived to change in size when there is a difference between the actual size of its image on the retina and the anticipated size of that image provided by the network. This provides a central mechanism for size constancy. If the retinal image is the afterimage of a body part, typically a hand, and that hand moves relative to the egocentre, the afterimage remains constant but the proprioceptive signals change to give the new hand position. When the network gives the anticipated size of the hand at its new position this no longer matches the fixed afterimage, hence a size-change illusion occurs.
format Online
Article
Text
id pubmed-9231332
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-92313322022-06-25 The Riemannian Geometry Theory of Visually-Guided Movement Accounts for Afterimage Illusions and Size Constancy Neilson, Peter D. Neilson, Megan D. Bye, Robin T. Vision (Basel) Article This discussion paper supplements our two theoretical contributions previously published in this journal on the geometric nature of visual space. We first show here how our Riemannian formulation explains the recent experimental finding (published in this special issue on size constancy) that, contrary to conclusions from past work, vergence does not affect perceived size. We then turn to afterimage experiments connected to that work. Beginning with the Taylor illusion, we explore how our proposed Riemannian visual–somatosensory–hippocampal association memory network accounts in the following way for perceptions that occur when afterimages are viewed in conjunction with body movement. The Riemannian metric incorporated in the association memory network accurately emulates the warping of 3D visual space that is intrinsically introduced by the eye. The network thus accurately anticipates the change in size of retinal images of objects with a change in Euclidean distance between the egocentre and the object. An object will only be perceived to change in size when there is a difference between the actual size of its image on the retina and the anticipated size of that image provided by the network. This provides a central mechanism for size constancy. If the retinal image is the afterimage of a body part, typically a hand, and that hand moves relative to the egocentre, the afterimage remains constant but the proprioceptive signals change to give the new hand position. When the network gives the anticipated size of the hand at its new position this no longer matches the fixed afterimage, hence a size-change illusion occurs. MDPI 2022-06-20 /pmc/articles/PMC9231332/ /pubmed/35737424 http://dx.doi.org/10.3390/vision6020037 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Neilson, Peter D.
Neilson, Megan D.
Bye, Robin T.
The Riemannian Geometry Theory of Visually-Guided Movement Accounts for Afterimage Illusions and Size Constancy
title The Riemannian Geometry Theory of Visually-Guided Movement Accounts for Afterimage Illusions and Size Constancy
title_full The Riemannian Geometry Theory of Visually-Guided Movement Accounts for Afterimage Illusions and Size Constancy
title_fullStr The Riemannian Geometry Theory of Visually-Guided Movement Accounts for Afterimage Illusions and Size Constancy
title_full_unstemmed The Riemannian Geometry Theory of Visually-Guided Movement Accounts for Afterimage Illusions and Size Constancy
title_short The Riemannian Geometry Theory of Visually-Guided Movement Accounts for Afterimage Illusions and Size Constancy
title_sort riemannian geometry theory of visually-guided movement accounts for afterimage illusions and size constancy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231332/
https://www.ncbi.nlm.nih.gov/pubmed/35737424
http://dx.doi.org/10.3390/vision6020037
work_keys_str_mv AT neilsonpeterd theriemanniangeometrytheoryofvisuallyguidedmovementaccountsforafterimageillusionsandsizeconstancy
AT neilsonmegand theriemanniangeometrytheoryofvisuallyguidedmovementaccountsforafterimageillusionsandsizeconstancy
AT byerobint theriemanniangeometrytheoryofvisuallyguidedmovementaccountsforafterimageillusionsandsizeconstancy
AT neilsonpeterd riemanniangeometrytheoryofvisuallyguidedmovementaccountsforafterimageillusionsandsizeconstancy
AT neilsonmegand riemanniangeometrytheoryofvisuallyguidedmovementaccountsforafterimageillusionsandsizeconstancy
AT byerobint riemanniangeometrytheoryofvisuallyguidedmovementaccountsforafterimageillusionsandsizeconstancy