Cargando…
A Regional Smoothing Block Sparse Bayesian Learning Method With Temporal Correlation for Channel Selection in P300 Speller
The P300-based brain–computer interfaces (BCIs) enable participants to communicate by decoding the electroencephalography (EEG) signal. Different regions of the brain correspond to various mental activities. Therefore, removing weak task-relevant and noisy channels through channel selection is neces...
Autores principales: | Zhao, Xueqing, Jin, Jing, Xu, Ren, Li, Shurui, Sun, Hao, Wang, Xingyu, Cichocki, Andrzej |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231363/ https://www.ncbi.nlm.nih.gov/pubmed/35754766 http://dx.doi.org/10.3389/fnhum.2022.875851 |
Ejemplares similares
-
P300-Based Brain-Computer Interface Speller: Usability Evaluation of Three Speller Sizes by Severely Motor-Disabled Patients
por: Medina-Juliá, M. Teresa, et al.
Publicado: (2020) -
Advances in P300 brain–computer interface spellers: toward paradigm design and performance evaluation
por: Pan, Jiahui, et al.
Publicado: (2022) -
Parallel Computing Sparse Wavelet Feature Extraction for P300 Speller BCI
por: Huang, Zhihua, et al.
Publicado: (2018) -
The cost of space independence in P300-BCI spellers
por: Chennu, Srivas, et al.
Publicado: (2013) -
Variance characteristic preserving common spatial pattern for motor imagery BCI
por: Liang, Wei, et al.
Publicado: (2023)