Cargando…
Fault Diagnosis for Power Transformers through Semi-Supervised Transfer Learning
The fault diagnosis of power transformers is a challenging problem. The massive multisource fault is heterogeneous, the type of fault is undetermined sometimes, and one device has only met a few kinds of faults in the past. We propose a fault diagnosis method based on deep neural networks and a semi...
Autores principales: | Mao, Weiyun, Wei, Bengang, Xu, Xiangyi, Chen, Lu, Wu, Tianyi, Peng, Zhengrui, Ren, Chen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231397/ https://www.ncbi.nlm.nih.gov/pubmed/35746252 http://dx.doi.org/10.3390/s22124470 |
Ejemplares similares
-
Dynamic Semi-Supervised Federated Learning Fault Diagnosis Method Based on an Attention Mechanism
por: Liu, Shun, et al.
Publicado: (2023) -
Cross-Machine Fault Diagnosis with Semi-Supervised Discriminative Adversarial Domain Adaptation
por: Wang, Xiaodong, et al.
Publicado: (2020) -
An Intelligent Fault Diagnosis Based on Adversarial Generating Module and Semi-supervised Convolutional Neural Network
por: Ye, Qing, et al.
Publicado: (2022) -
A Semi-Supervised Approach to Bearing Fault Diagnosis under Variable Conditions towards Imbalanced Unlabeled Data
por: Chen, Xinan, et al.
Publicado: (2018) -
Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis
por: da Rosa, Tiago Gaspar, et al.
Publicado: (2022)