Cargando…
Explaining a Deep Learning Based Breast Ultrasound Image Classifier with Saliency Maps
AIM OF THE STUDY: Deep neural networks have achieved good performance in breast mass classification in ultrasound imaging. However, their usage in clinical practice is still limited due to the lack of explainability of decisions conducted by the networks. In this study, to address the explainability...
Autores principales: | Byra, Michał, Dobruch-Sobczak, Katarzyna, Piotrzkowska-Wroblewska, Hanna, Klimonda, Ziemowit, Litniewski, Jerzy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Sciendo
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231514/ https://www.ncbi.nlm.nih.gov/pubmed/35811586 http://dx.doi.org/10.15557/JoU.2022.0013 |
Ejemplares similares
-
Breast-lesions characterization using Quantitative Ultrasound features of peritumoral tissue
por: Klimonda, Ziemowit, et al.
Publicado: (2019) -
Monitoring breast cancer response to neoadjuvant chemotherapy with ultrasound signal statistics and integrated backscatter
por: Piotrzkowska-Wróblewska, Hanna, et al.
Publicado: (2019) -
Quantitative Assessment of the Echogenicity of a Breast Tumor Predicts the Response to Neoadjuvant Chemotherapy
por: Dobruch-Sobczak, Katarzyna Sylwia, et al.
Publicado: (2021) -
Quantitative Ultrasonography as a Tool for the Evaluation of Breast Tumor Response to Neoadjuvant Chemotherapy
por: Piotrzkowska-Wróblewska, Hanna, et al.
Publicado: (2022) -
Monitoring the response to neoadjuvant chemotherapy in patients with breast cancer using ultrasound scattering coefficient: A preliminary report
por: Dobruch-Sobczak, Katarzyna, et al.
Publicado: (2019)