Cargando…
Assessing kidney stone composition using smartphone microscopy and deep neural networks
OBJECTIVES: To propose a point‐of‐care image recognition system for kidney stone composition classification using smartphone microscopy and deep convolutional neural networks. MATERIALS AND METHODS: A total of 37 surgically extracted human kidney stones consisting of calcium oxalate (CaOx), cystine,...
Autores principales: | Onal, Ege Gungor, Tekgul, Hakan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231678/ https://www.ncbi.nlm.nih.gov/pubmed/35783589 http://dx.doi.org/10.1002/bco2.137 |
Ejemplares similares
-
Cardiac Troponin for Assessment of Myocardial Injury in COVID-19: JACC Review Topic of the Week
por: Sandoval, Yader, et al.
Publicado: (2020) -
Deep Neural Network-Based Fusion Localization Using Smartphones
por: Yan, Suqing, et al.
Publicado: (2023) -
Building Research Support Capacity across Human Health Biobanks during the COVID-19 Pandemic
por: Byrne, Jennifer A, et al.
Publicado: (2021) -
Moving with the Times: The Health Science Alliance (HSA) Biobank, Pathway to Sustainability
por: Quinn, Carmel M, et al.
Publicado: (2021) -
Mind Over Matter: Confronting Challenges in Post-Mortem Brain Biobanking for Glioblastoma Multiforme
por: Griffin, Cassandra, et al.
Publicado: (2021)