Cargando…
Alantolactone reduced neuron injury via activating PI3K/Akt signaling pathway after subarachnoid hemorrhage in rats
Subarachnoid hemorrhage (SAH) is a common disease with high morbidity and mortality, which can cause pathological, physiological, and biological reactions. SAH causes a series of responses such as neuronal and cerebral cortex damage, which in turn leads to inflammation and apoptosis. Traditional Chi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231788/ https://www.ncbi.nlm.nih.gov/pubmed/35749405 http://dx.doi.org/10.1371/journal.pone.0270410 |
Sumario: | Subarachnoid hemorrhage (SAH) is a common disease with high morbidity and mortality, which can cause pathological, physiological, and biological reactions. SAH causes a series of responses such as neuronal and cerebral cortex damage, which in turn leads to inflammation and apoptosis. Traditional Chinese medicine has a strong anti-inflammatory effect, such as Alantolactone (ATL). However, studies on ATL therapy for SAH have not been reported. We observed the neurological scores, brain water content, Evans blue (EB) extravasation, neuroinflammation, and apoptosis via performing an enzyme-linked immunosorbent assay (ELISA), western blotting, immunofluorescence staining, and other methods after SAH. In this study, we found that ATL treatment attenuated the neurologic deficits, inhibited neuronal apoptosis and inflammatory reaction, promoted polarization of microglia toward the M2 phenotype, and activated the PI3K/Akt signaling pathway. ATL can reduce the neurons and cerebral cortex damage of SAH rats through activating PI3K/Akt signaling pathway. |
---|