Cargando…
MicNet toolbox: Visualizing and unraveling a microbial network
Applications of network theory to microbial ecology are an emerging and promising approach to understanding both global and local patterns in the structure and interplay of these microbial communities. In this paper, we present an open-source python toolbox which consists of two modules: on one hand...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231805/ https://www.ncbi.nlm.nih.gov/pubmed/35749381 http://dx.doi.org/10.1371/journal.pone.0259756 |
_version_ | 1784735429045518336 |
---|---|
author | Favila, Natalia Madrigal-Trejo, David Legorreta, Daniel Sánchez-Pérez, Jazmín Espinosa-Asuar, Laura Eguiarte, Luis E. Souza, Valeria |
author_facet | Favila, Natalia Madrigal-Trejo, David Legorreta, Daniel Sánchez-Pérez, Jazmín Espinosa-Asuar, Laura Eguiarte, Luis E. Souza, Valeria |
author_sort | Favila, Natalia |
collection | PubMed |
description | Applications of network theory to microbial ecology are an emerging and promising approach to understanding both global and local patterns in the structure and interplay of these microbial communities. In this paper, we present an open-source python toolbox which consists of two modules: on one hand, we introduce a visualization module that incorporates the use of UMAP, a dimensionality reduction technique that focuses on local patterns, and HDBSCAN, a clustering technique based on density; on the other hand, we have included a module that runs an enhanced version of the SparCC code, sustaining larger datasets than before, and we couple the resulting networks with network theory analyses to describe the resulting co-occurrence networks, including several novel analyses, such as structural balance metrics and a proposal to discover the underlying topology of a co-occurrence network. We validated the proposed toolbox on 1) a simple and well described biological network of kombucha, consisting of 48 ASVs, and 2) we validate the improvements of our new version of SparCC. Finally, we showcase the use of the MicNet toolbox on a large dataset from Archean Domes, consisting of more than 2,000 ASVs. Our toolbox is freely available as a github repository (https://github.com/Labevo/MicNetToolbox), and it is accompanied by a web dashboard (http://micnetapplb-1212130533.us-east-1.elb.amazonaws.com) that can be used in a simple and straightforward manner with relative abundance data. This easy-to-use implementation is aimed to microbial ecologists with little to no experience in programming, while the most experienced bioinformatics will also be able to manipulate the source code’s functions with ease. |
format | Online Article Text |
id | pubmed-9231805 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-92318052022-06-25 MicNet toolbox: Visualizing and unraveling a microbial network Favila, Natalia Madrigal-Trejo, David Legorreta, Daniel Sánchez-Pérez, Jazmín Espinosa-Asuar, Laura Eguiarte, Luis E. Souza, Valeria PLoS One Research Article Applications of network theory to microbial ecology are an emerging and promising approach to understanding both global and local patterns in the structure and interplay of these microbial communities. In this paper, we present an open-source python toolbox which consists of two modules: on one hand, we introduce a visualization module that incorporates the use of UMAP, a dimensionality reduction technique that focuses on local patterns, and HDBSCAN, a clustering technique based on density; on the other hand, we have included a module that runs an enhanced version of the SparCC code, sustaining larger datasets than before, and we couple the resulting networks with network theory analyses to describe the resulting co-occurrence networks, including several novel analyses, such as structural balance metrics and a proposal to discover the underlying topology of a co-occurrence network. We validated the proposed toolbox on 1) a simple and well described biological network of kombucha, consisting of 48 ASVs, and 2) we validate the improvements of our new version of SparCC. Finally, we showcase the use of the MicNet toolbox on a large dataset from Archean Domes, consisting of more than 2,000 ASVs. Our toolbox is freely available as a github repository (https://github.com/Labevo/MicNetToolbox), and it is accompanied by a web dashboard (http://micnetapplb-1212130533.us-east-1.elb.amazonaws.com) that can be used in a simple and straightforward manner with relative abundance data. This easy-to-use implementation is aimed to microbial ecologists with little to no experience in programming, while the most experienced bioinformatics will also be able to manipulate the source code’s functions with ease. Public Library of Science 2022-06-24 /pmc/articles/PMC9231805/ /pubmed/35749381 http://dx.doi.org/10.1371/journal.pone.0259756 Text en © 2022 Favila et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Favila, Natalia Madrigal-Trejo, David Legorreta, Daniel Sánchez-Pérez, Jazmín Espinosa-Asuar, Laura Eguiarte, Luis E. Souza, Valeria MicNet toolbox: Visualizing and unraveling a microbial network |
title | MicNet toolbox: Visualizing and unraveling a microbial network |
title_full | MicNet toolbox: Visualizing and unraveling a microbial network |
title_fullStr | MicNet toolbox: Visualizing and unraveling a microbial network |
title_full_unstemmed | MicNet toolbox: Visualizing and unraveling a microbial network |
title_short | MicNet toolbox: Visualizing and unraveling a microbial network |
title_sort | micnet toolbox: visualizing and unraveling a microbial network |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231805/ https://www.ncbi.nlm.nih.gov/pubmed/35749381 http://dx.doi.org/10.1371/journal.pone.0259756 |
work_keys_str_mv | AT favilanatalia micnettoolboxvisualizingandunravelingamicrobialnetwork AT madrigaltrejodavid micnettoolboxvisualizingandunravelingamicrobialnetwork AT legorretadaniel micnettoolboxvisualizingandunravelingamicrobialnetwork AT sanchezperezjazmin micnettoolboxvisualizingandunravelingamicrobialnetwork AT espinosaasuarlaura micnettoolboxvisualizingandunravelingamicrobialnetwork AT eguiarteluise micnettoolboxvisualizingandunravelingamicrobialnetwork AT souzavaleria micnettoolboxvisualizingandunravelingamicrobialnetwork |