Cargando…
HiCImpute: A Bayesian hierarchical model for identifying structural zeros and enhancing single cell Hi-C data
Single cell Hi-C techniques enable one to study cell to cell variability in chromatin interactions. However, single cell Hi-C (scHi-C) data suffer severely from sparsity, that is, the existence of excess zeros due to insufficient sequencing depth. Complicating the matter further is the fact that not...
Autores principales: | Xie, Qing, Han, Chenggong, Jin, Victor, Lin, Shili |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9232133/ https://www.ncbi.nlm.nih.gov/pubmed/35696429 http://dx.doi.org/10.1371/journal.pcbi.1010129 |
Ejemplares similares
-
Modeling and analysis of Hi-C data by HiSIF identifies characteristic promoter-distal loops
por: Zhou, Yufan, et al.
Publicado: (2020) -
ZipHiC: a novel Bayesian framework to identify enriched interactions and experimental biases in Hi-C data
por: Osuntoki, Itunu G, et al.
Publicado: (2022) -
HiCEnterprise: identifying long range chromosomal contacts in Hi-C data
por: Kranas, Hanna, et al.
Publicado: (2021) -
Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains
por: Ron, Gil, et al.
Publicado: (2017) -
SnapHiC: a computational pipeline to identify chromatin loops from single-cell Hi-C data
por: Yu, Miao, et al.
Publicado: (2021)