Cargando…
Artificial Neural Network-Based Ultrasound Radiomics Can Predict Large-Volume Lymph Node Metastasis in Clinical N0 Papillary Thyroid Carcinoma Patients
OBJECTIVE: To evaluate the ability of artificial neural network- (ANN-) based ultrasound radiomics to predict large-volume lymph node metastasis (LNM) preoperatively in clinical N0 disease (cN0) papillary thyroid carcinoma (PTC) patients. METHODS: From January 2020 to April 2021, 306 cN0 PTC patient...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9232339/ https://www.ncbi.nlm.nih.gov/pubmed/35756084 http://dx.doi.org/10.1155/2022/7133972 |
_version_ | 1784735556007100416 |
---|---|
author | Zhu, Wan Huang, Xingzhi Qi, Qi Wu, Zhenghua Min, Xiang Zhou, Aiyun Xu, Pan |
author_facet | Zhu, Wan Huang, Xingzhi Qi, Qi Wu, Zhenghua Min, Xiang Zhou, Aiyun Xu, Pan |
author_sort | Zhu, Wan |
collection | PubMed |
description | OBJECTIVE: To evaluate the ability of artificial neural network- (ANN-) based ultrasound radiomics to predict large-volume lymph node metastasis (LNM) preoperatively in clinical N0 disease (cN0) papillary thyroid carcinoma (PTC) patients. METHODS: From January 2020 to April 2021, 306 cN0 PTC patients admitted to our hospital were retrospectively reviewed and divided into a training (n = 183) cohort and a validation cohort (n = 123) in a 6 : 4 ratio. Radiomic features quantitatively extracted from ultrasound images were pruned to train one ANN-based radiomic model and three conventional machine learning-based classifiers in the training cohort. Furthermore, an integrated model using ANN was constructed for better prediction. Meanwhile, the prediction of the two models was evaluated in the papillary thyroid microcarcinoma (PTMC) and conventional papillary thyroid cancer (CPTC) subgroups. RESULTS: The radiomic model showed better discrimination than other classifiers for large-volume LNM in the validation cohort, with an area under the receiver operating characteristic curve (AUROC) of 0.856 and an area under the precision-recall curve (AUPR) of 0.381. The performance of the integrated model was better, with an AUROC of 0.910 and an AUPR of 0.463. According to the calibration curve and decision curve analysis, the radiomic and integrated models had good calibration and clinical usefulness. Moreover, the models had good predictive performance in the PTMC and CPTC subgroups. CONCLUSION: ANN-based ultrasound radiomics could be a potential tool to predict large-volume LNM preoperatively in cN0 PTC patients. |
format | Online Article Text |
id | pubmed-9232339 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-92323392022-06-25 Artificial Neural Network-Based Ultrasound Radiomics Can Predict Large-Volume Lymph Node Metastasis in Clinical N0 Papillary Thyroid Carcinoma Patients Zhu, Wan Huang, Xingzhi Qi, Qi Wu, Zhenghua Min, Xiang Zhou, Aiyun Xu, Pan J Oncol Research Article OBJECTIVE: To evaluate the ability of artificial neural network- (ANN-) based ultrasound radiomics to predict large-volume lymph node metastasis (LNM) preoperatively in clinical N0 disease (cN0) papillary thyroid carcinoma (PTC) patients. METHODS: From January 2020 to April 2021, 306 cN0 PTC patients admitted to our hospital were retrospectively reviewed and divided into a training (n = 183) cohort and a validation cohort (n = 123) in a 6 : 4 ratio. Radiomic features quantitatively extracted from ultrasound images were pruned to train one ANN-based radiomic model and three conventional machine learning-based classifiers in the training cohort. Furthermore, an integrated model using ANN was constructed for better prediction. Meanwhile, the prediction of the two models was evaluated in the papillary thyroid microcarcinoma (PTMC) and conventional papillary thyroid cancer (CPTC) subgroups. RESULTS: The radiomic model showed better discrimination than other classifiers for large-volume LNM in the validation cohort, with an area under the receiver operating characteristic curve (AUROC) of 0.856 and an area under the precision-recall curve (AUPR) of 0.381. The performance of the integrated model was better, with an AUROC of 0.910 and an AUPR of 0.463. According to the calibration curve and decision curve analysis, the radiomic and integrated models had good calibration and clinical usefulness. Moreover, the models had good predictive performance in the PTMC and CPTC subgroups. CONCLUSION: ANN-based ultrasound radiomics could be a potential tool to predict large-volume LNM preoperatively in cN0 PTC patients. Hindawi 2022-06-17 /pmc/articles/PMC9232339/ /pubmed/35756084 http://dx.doi.org/10.1155/2022/7133972 Text en Copyright © 2022 Wan Zhu et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zhu, Wan Huang, Xingzhi Qi, Qi Wu, Zhenghua Min, Xiang Zhou, Aiyun Xu, Pan Artificial Neural Network-Based Ultrasound Radiomics Can Predict Large-Volume Lymph Node Metastasis in Clinical N0 Papillary Thyroid Carcinoma Patients |
title | Artificial Neural Network-Based Ultrasound Radiomics Can Predict Large-Volume Lymph Node Metastasis in Clinical N0 Papillary Thyroid Carcinoma Patients |
title_full | Artificial Neural Network-Based Ultrasound Radiomics Can Predict Large-Volume Lymph Node Metastasis in Clinical N0 Papillary Thyroid Carcinoma Patients |
title_fullStr | Artificial Neural Network-Based Ultrasound Radiomics Can Predict Large-Volume Lymph Node Metastasis in Clinical N0 Papillary Thyroid Carcinoma Patients |
title_full_unstemmed | Artificial Neural Network-Based Ultrasound Radiomics Can Predict Large-Volume Lymph Node Metastasis in Clinical N0 Papillary Thyroid Carcinoma Patients |
title_short | Artificial Neural Network-Based Ultrasound Radiomics Can Predict Large-Volume Lymph Node Metastasis in Clinical N0 Papillary Thyroid Carcinoma Patients |
title_sort | artificial neural network-based ultrasound radiomics can predict large-volume lymph node metastasis in clinical n0 papillary thyroid carcinoma patients |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9232339/ https://www.ncbi.nlm.nih.gov/pubmed/35756084 http://dx.doi.org/10.1155/2022/7133972 |
work_keys_str_mv | AT zhuwan artificialneuralnetworkbasedultrasoundradiomicscanpredictlargevolumelymphnodemetastasisinclinicaln0papillarythyroidcarcinomapatients AT huangxingzhi artificialneuralnetworkbasedultrasoundradiomicscanpredictlargevolumelymphnodemetastasisinclinicaln0papillarythyroidcarcinomapatients AT qiqi artificialneuralnetworkbasedultrasoundradiomicscanpredictlargevolumelymphnodemetastasisinclinicaln0papillarythyroidcarcinomapatients AT wuzhenghua artificialneuralnetworkbasedultrasoundradiomicscanpredictlargevolumelymphnodemetastasisinclinicaln0papillarythyroidcarcinomapatients AT minxiang artificialneuralnetworkbasedultrasoundradiomicscanpredictlargevolumelymphnodemetastasisinclinicaln0papillarythyroidcarcinomapatients AT zhouaiyun artificialneuralnetworkbasedultrasoundradiomicscanpredictlargevolumelymphnodemetastasisinclinicaln0papillarythyroidcarcinomapatients AT xupan artificialneuralnetworkbasedultrasoundradiomicscanpredictlargevolumelymphnodemetastasisinclinicaln0papillarythyroidcarcinomapatients |