Cargando…
Privacy-preserving for assembly deviation prediction in a machine learning model of hydraulic equipment under value chain collaboration
Hydraulic equipment, as a typical mechanical product, has been wildly used in various fields. Accurate acquisition and secure transmission of assembly deviation data are the most critical issues for hydraulic equipment manufacturer in the PLM-oriented value chain collaboration. Existing deviation pr...
Autores principales: | Qiu, Hao, Feng, Yixiong, Hong, Zhaoxi, Li, Kangjie, Tan, Jianrong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9232523/ https://www.ncbi.nlm.nih.gov/pubmed/35750710 http://dx.doi.org/10.1038/s41598-022-14835-1 |
Ejemplares similares
-
Hydraulic power and equipment
por: Holzbock, Werner G
Publicado: (1968) -
Privacy-Preserving Restricted Boltzmann Machine
por: Li, Yu, et al.
Publicado: (2014) -
Federated learning for preserving data privacy in collaborative
healthcare research
por: Loftus, Tyler J, et al.
Publicado: (2022) -
Privacy preserving identification of population stratification for collaborative genomic research
por: Dervishi, Leonard, et al.
Publicado: (2023) -
Privacy Preserving RBF Kernel Support Vector Machine
por: Li, Haoran, et al.
Publicado: (2014)