Cargando…
Preparing for the next pandemic via transfer learning from existing diseases with hierarchical multi-modal BERT: a study on COVID-19 outcome prediction
Developing prediction models for emerging infectious diseases from relatively small numbers of cases is a critical need for improving pandemic preparedness. Using COVID-19 as an exemplar, we propose a transfer learning methodology for developing predictive models from multi-modal electronic healthca...
Autores principales: | Agarwal, Khushbu, Choudhury, Sutanay, Tipirneni, Sindhu, Mukherjee, Pritam, Ham, Colby, Tamang, Suzanne, Baker, Matthew, Tang, Siyi, Kocaman, Veysel, Gevaert, Olivier, Rallo, Robert, Reddy, Chandan K |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9232529/ https://www.ncbi.nlm.nih.gov/pubmed/35750878 http://dx.doi.org/10.1038/s41598-022-13072-w |
Ejemplares similares
-
To BERT or Not to BERT Dealing with Possible BERT Failures in an Entailment Task
por: Fialho, Pedro, et al.
Publicado: (2020) -
MCred: multi-modal message credibility for fake news detection using BERT and CNN
por: Verma, Pawan Kumar, et al.
Publicado: (2022) -
VGCN-BERT: Augmenting BERT with Graph Embedding for Text Classification
por: Lu, Zhibin, et al.
Publicado: (2020) -
IUP-BERT: Identification of Umami Peptides Based on BERT Features
por: Jiang, Liangzhen, et al.
Publicado: (2022) -
FakeStack: Hierarchical Tri-BERT-CNN-LSTM stacked model for effective fake news detection
por: Keya, Ashfia Jannat, et al.
Publicado: (2023)